

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 1 -

KSZ88xx Programming Guide

Micrel KSZ88xx Programmer’s Guide
For Generic Bus /PCI Bus Interface

Rev 1.2

06/30/2006

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 2 -

KSZ88xx Programming Guide

Table of Contents

1 Overview ... 5
2 KS88xx Driver Source and Include Files .. 6

2.1 Driver Source and Header File Descriptions ...6
2.2 Driver Data Structure ..7

2.2.1 Generic Bus Data Structure Initialization ...7
2.2.2 PCI Bus Data Structure Initialization ...8

2.3 KS88xx Driver Platform Support ..10
2.3.1 M16C With OpenTCP Driver Block Diagram ...12
2.3.2 SH7751R With VxWorks OS Driver Block Diagram ..13
2.3.3 Linux OS Driver Block Diagram..14
2.3.4 Definitions to Generate a Particular KS88xx Driver ..15

3 Mapping KSZ88xx Device to Host CPU Memory Area ... 16
3.1 Mapping KSZ88xxM Generic Bus Device to Host CPU Memory Area.......................................16

3.1.1 Assign Base Memory Address to the Device ...16
3.1.2 Connecting KSZ88xxM Device Interrupt to Host CPU Interrupt Source17

3.2 Assign PCI Memory Space for KSZ88xxP PCI Bus Device...18
4 KSZ88xx Device Initialization.. 20

4.1 KSZ88xxM Generic Bus Interface Device Initialization ..20
4.1.1 Register Setting for Switch...20
4.1.2 Register Setting for Transmit..20
4.1.3 Register Setting for Receive ...21
4.1.4 Initialization Routine ..22

4.2 KSZ88xx PCI Bus Interface Device Initialization ..25
4.2.1 Register Setting for PCI Configuration Space ..25
4.2.2 Register Setting for Switch...25
4.2.3 Register Setting for Transmit..25
4.2.4 Register Setting for Receive ...26
4.2.5 Transmit and Receive Descriptor Lists and Data Buffers...27
4.2.6 Initialization Routine ..29

5 KSZ88xx Driver Transmit Packets to Device – Flowchart .. 32
5.1 KSZ88xxM Generic Bus Interface Transmit Routine ...33
5.2 KSZ88xxP PCI Bus Interface Transmit Routine...38

6 KSZ88xx Driver Receive Packets from Device – Flowchart ... 42
6.1 KSZ88xxM Generic Bus Interface Receive Routine...43
6.2 KSZ88xxP PCI Bus Interface Receive Routine ..48

7 KSZ88xx Driver API Reference .. 52
7.1 Device Accesses APIs ...52
7.2 Device Initialization APIs ...60
7.3 Device Interrupt APIs..64
7.4 Device Transmit APIs ...68
7.5 Device Receive APIs...72
7.6 Set Device PHY APIs..75
7.7 Set Device Ports APIs ...79
7.8 Set Device LinkMD™ APIs..81

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 3 -

KSZ88xx Programming Guide

7.9 Set Wake-on-LAN APIs..82
7.10 Set Device STP APIs...86
7.11 Set Device VLAN APIs...87
7.12 Set Device Rate Limiting APIs ...93
7.13 Set Device QoS APIs ..98
7.14 Set Device Mirror APIs ...104
7.15 Set Device Table Accesses APIs ...108
7.16 EEPROM Access APIs ...112

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 4 -

KSZ88xx Programming Guide

Revision History

Revision Date Summary of Changes
0.3 6/28/05 First released, preliminary information only for generic bus version of driver

description.
0.4 9/16/05 Added support platform drivers block diagram.
1.0 10/28/05 Added PCI bus version of driver description.
1.1 03/21/06 Update Table 2-4 for more OS the driver support.
1.2 06/30/06 Added EEPROM access support. Include KSZ886x family support.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 5 -

KSZ88xx Programming Guide

1 Overview

The KS88xx driver works for KSZ8841M, KSZ8842M, KSZ8861M, KSZ8862M,
KSZ8841P, or KSZ8842P device, and is independent from hardware platforms
and operating systems. The KS88xx driver also works for Generic bus or
PCI bus interface.

The KS88xx driver provides a set of API (Application Programming
Interface) for the user to:

• Initialize KSZ88xx device.
• Set PHY link speed and duplex.
• Transmit the packets to KSZ88xx device.
• Receive the packets from KSZ88xx device.
• Diagnose cable status with LinkMD cable diagnostics function.

It provides the following API for KSZ8842/8862-only features:

• Read VLAN table, static MAC table, dynamic MAC table, and MIB
counters.

• Create VLAN table and static MAC table.
• Configure VLAN functions.
• Configure IEEE 802.1d Spanning Tree Protocol.
• Configure per-port broadcast storm protection.
• Configure per-port rate limiting at the ingress and egress.
• Configure QoS (port-base, 802.1p and DiffServ) function.
• Configure Mirroring function.

It provides the following API for KSZ8841-only features:

• Configure Wake-on-LAN function.

It also provides a set of CLI functions for user to diagnose the KSZ88xx
device.

When reading this document, please have the relative device datasheet as
cross reference.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 6 -

KSZ88xx Programming Guide

2 KS88xx Driver Source and Include Files

This section describes the KS88xx driver associated source and header
files.

2.1 Driver Source and Header File Descriptions

The KS88xx hardware driver is platform and OS independent. It can be
ported to any platform and OS. The KS88xx driver source and header files
are:

File Name Description
hardware.c

- Initialize KSZ88xx device.
- Transmit the packets to KSZ88xx device.
- Receive the packets from KSZ88xx device.
- Configure Early transmit/receive function.

ks_config.c - Set PHY link speed and duplex on a per port basis.
ks_stp.c - Set port base STP states (disabled, blocking,

listening, learning, and forwarding) from Spanning
Tree Protocol.

ks_table.c - Read VLAN table.
- Read static MAC, dynamic MAC table.
- Read SNMP MIB counters.
- Create VLAN table.
- Create static MAC table.

ks_vlan.c - Configure port base VLAN on a per port basis.
- Configure VLAN ingress, and egress function on a per

port basis.
ks_rate.c Configure broadcast storm protection on per port basis

- Configure rate limiting at ingress and egress ports on
a per port basis.

ks_qos.c - Set DiffServ priority values.
- Configure DiffServ, and 802.1p function on a per port

basis.
- Configure re-mapping 802.1p priority field on a per

port basis.
ks_mirror.c - Configure port mirroring/sniffing on a per port basis.
ks_Diag.c
cliTable.h

- Provides all CLI functions to diagnosis the device.

hardware.h Device driver header file.
- Driver structure.
- Device registers definitions.

ks_def.h - KSZ8842/8862 device switch register definitions header
file

ks_config.h - Device Driver configuration functions header file.
target.c - Platform or OS dependence functions.
target.h - Platform or OS dependence read/write device registers

functions.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 7 -

KSZ88xx Programming Guide

Table 2-1. Driver Source and Header Files Descriptions

2.2 Driver Data Structure

The data structure used by KS88xx hardware driver is HARDWARE. The
structure is defined in hardware.h.

typedef struct
{
 struct hw_fn* m_hwfn;

 UCHAR m_bPermanentAddress[MAC_ADDRESS_LENGTH];
 UCHAR m_bOverrideAddress[MAC_ADDRESS_LENGTH];

 /* PHY status info. */
 ULONG m_ulHardwareState;
 ULONG m_ulTransmitRate;
 ULONG m_ulDuplex;

 /* hardware resources */
 PUCHAR m_pVirtualMemory;
 ULONG m_ulVIoAddr; /* device's base address */
 ULONG m_boardBusEndianMode; /* board bus endian

. mode board specific */

.
} HARDWARE, *PHARDWARE;

The first thing in the driver initialization function is to allocate a
system memory for the HARDWARE structure.

Secondly, allocate the KS884x internal set APIs structure struct hw_fn,
and initialize the API routines that are for Generic bus or PCI bus.

Then assign the KSZ88xx device base address to m_ulVIoAddr before driver
accessing the device. For the generic bus interface, the lower 16-bit
value of m_ulVIoAddr must be the same as the device register BAR (Base
Address Register).

2.2.1 Generic Bus Data Structure Initialization

For example, to initialize struct hw_fn of KSZ88xxM generic bus
interface:

void ksSetApiFunctions (struct hw_fn *pks_fn)
{
 pks_fn->m_fPCI = FALSE;

 pks_fn->fnSwitchDisableMirrorSniffer = SwitchDisableMirrorSniffer_ISA;
 pks_fn->fnSwitchEnableMirrorSniffer = SwitchEnableMirrorSniffer_ISA;
 pks_fn->fnSwitchDisableMirrorReceive = SwitchDisableMirrorReceive_ISA;
 pks_fn->fnSwitchEnableMirrorReceive = SwitchEnableMirrorReceive_ISA;
 pks_fn->fnSwitchDisableMirrorTransmit = SwitchDisableMirrorTransmit_ISA;
 pks_fn->fnSwitchEnableMirrorTransmit = SwitchEnableMirrorTransmit_ISA;
 pks_fn->fnSwitchDisableMirrorRxAndTx = SwitchDisableMirrorRxAndTx_ISA;

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 8 -

KSZ88xx Programming Guide

 pks_fn->fnSwitchEnableMirrorRxAndTx = SwitchEnableMirrorRxAndTx_ISA;

 pks_fn->fnHardwareConfig_TOS_Priority = HardwareConfig_TOS_Priority_ISA;
 pks_fn->fnSwitchDisableDiffServ = SwitchDisableDiffServ_ISA;
 pks_fn->fnSwitchEnableDiffServ = SwitchEnableDiffServ_ISA;

 pks_fn->fnHardwareConfig802_1P_Priority = HardwareConfig802_1P_Priorit_ISA;
 pks_fn->fnSwitchDisable802_1P = SwitchDisable802_1P_ISA;
 pks_fn->fnSwitchEnable802_1P = SwitchEnable802_1P_ISA;
 pks_fn->fnSwitchDisableDot1pRemapping = SwitchDisableDot1pRemapping_ISA;
 pks_fn->fnSwitchEnableDot1pRemapping = SwitchEnableDot1pRemapping_ISA;

 pks_fn->fnSwitchConfigPortBased = SwitchConfigPortBased_ISA;

 pks_fn->fnSwitchDisableMultiQueue = SwitchDisableMultiQueue_ISA;
 pks_fn->fnSwitchEnableMultiQueue = SwitchEnableMultiQueue_ISA;

 pks_fn->fnSwitchDisableBroadcastStorm = SwitchDisableBroadcastStorm_ISA;
 pks_fn->fnSwitchEnableBroadcastStorm = SwitchEnableBroadcastStorm_ISA;
 pks_fn->fnHardwareConfigBroadcastStorm = HardwareConfigBroadcastStorm_ISA;

 pks_fn->fnSwitchDisablePriorityRate = SwitchDisablePriorityRate_ISA;
 pks_fn->fnSwitchEnablePriorityRate = SwitchEnablePriorityRate_ISA;

 pks_fn->fnHardwareConfigRxPriorityRate = HardwareConfigRxPriorityRate_ISA;
 pks_fn->fnHardwareConfigTxPriorityRate = HardwareConfigTxPriorityRate_ISA;

 pks_fn->fnPortSet_STP_State = PortSet_STP_State_ISA;

 pks_fn->fnPortReadMIBCounter = PortReadMIBCounter_ISA;
 pks_fn->fnPortReadMIBPacket = PortReadMIBPacket_ISA;

 pks_fn->fnSwitchEnableVlan = SwitchEnableVlan_ISA;
}

2.2.2 PCI Bus Data Structure Initialization

For example, to initialize struct hw_fn of KSZ88xxP PCI bus interface:

void ksSetApiFunctions (struct hw_fn *pks_fn)
{
 pks_fn->m_fPCI = TURE;

 pks_fn->fnSwitchDisableMirrorSniffer = SwitchDisableMirrorSniffer_PCI;
 pks_fn->fnSwitchEnableMirrorSniffer = SwitchEnableMirrorSniffer_PCI;
 pks_fn->fnSwitchDisableMirrorReceive = SwitchDisableMirrorReceive_PCI;
 pks_fn->fnSwitchEnableMirrorReceive = SwitchEnableMirrorReceive_PCI;
 pks_fn->fnSwitchDisableMirrorTransmit = SwitchDisableMirrorTransmit_PCI;
 pks_fn->fnSwitchEnableMirrorTransmit = SwitchEnableMirrorTransmit_PCI;
 pks_fn->fnSwitchDisableMirrorRxAndTx = SwitchDisableMirrorRxAndTx_PCI;
 pks_fn->fnSwitchEnableMirrorRxAndTx = SwitchEnableMirrorRxAndTx_PCI;

 pks_fn->fnHardwareConfig_TOS_Priority = HardwareConfig_TOS_Priority_PCI;
 pks_fn->fnSwitchDisableDiffServ = SwitchDisableDiffServ_PCI;
 pks_fn->fnSwitchEnableDiffServ = SwitchEnableDiffServ_PCI;

 pks_fn->fnHardwareConfig802_1P_Priority = HardwareConfig802_1P_Priorit_PCI;

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 9 -

KSZ88xx Programming Guide

 pks_fn->fnSwitchDisable802_1P = SwitchDisable802_1P_PCI;
 pks_fn->fnSwitchEnable802_1P = SwitchEnable802_1P_PCI;
 pks_fn->fnSwitchDisableDot1pRemapping = SwitchDisableDot1pRemapping_PCI;
 pks_fn->fnSwitchEnableDot1pRemapping = SwitchEnableDot1pRemapping_PCI;

 pks_fn->fnSwitchConfigPortBased = SwitchConfigPortBased_PCI;

 pks_fn->fnSwitchDisableMultiQueue = SwitchDisableMultiQueue_PCI;
 pks_fn->fnSwitchEnableMultiQueue = SwitchEnableMultiQueue_PCI;

 pks_fn->fnSwitchDisableBroadcastStorm = SwitchDisableBroadcastStorm_PCI;
 pks_fn->fnSwitchEnableBroadcastStorm = SwitchEnableBroadcastStorm_PCI;
 pks_fn->fnHardwareConfigBroadcastStorm = HardwareConfigBroadcastStorm_PCI;

 pks_fn->fnSwitchDisablePriorityRate = SwitchDisablePriorityRate_PCI;
 pks_fn->fnSwitchEnablePriorityRate = SwitchEnablePriorityRate_PCI;

 pks_fn->fnHardwareConfigRxPriorityRate = HardwareConfigRxPriorityRate_PCI;
 pks_fn->fnHardwareConfigTxPriorityRate = HardwareConfigTxPriorityRate_PCI;

 pks_fn->fnPortSet_STP_State = PortSet_STP_State_PCI;

 pks_fn->fnPortReadMIBCounter = PortReadMIBCounter_PCI;
 pks_fn->fnPortReadMIBPacket = PortReadMIBPacket_PCI;

 pks_fn->fnSwitchEnableVlan = SwitchEnableVlan_PCI;
}

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 10 -

KSZ88xx Programming Guide

2.3 KS88xx Driver Platform Support
Other than the platform/OS independent KS88xx hardware driver, we also
provide following platform/OS dependent sample drivers listed in the
Table 2-4.

Buses Microprocessor OS Protocol Stack Compiler Option
Definition

Software Driver1

ZiLog eZ80L92 2 ZTP 1.3.2 3 ZTP 1.3.2 _EZ80L92

KS88xx
8-bit generic
bus

Renesas M16C/62P4

None OpenTCP
1.0.4 5

M16C_62P KS88xx

16-bit generic
bus

Renesas M16C/62P

None OpenTCP
1.0.4

M16C_62P KS88xx

Renesas SH7751R6 vxWorks 5.5.1
Tornado 2.2.17

vxWorks 5.5.1
Tornado 2.2.1

DEF_VXWORKS KS88xx

Renesas SH7760 WinCE 5.0 WinCE 5.0 _WIN32 KS88xx

 Linux 2.4 / 2.6 Linux 2.4 / 2.6 DEF_LINUX KS88xx

32-bit generic
bus

 Windows
2000/XP

Windows
2000/XP

_WIN32 KS88xx

Renesas SH7751R vxWorks 5.5.1
Tornado 2.2.1

vxWorks 5.5.1
Tornado 2.2.1

DEF_VXWORKS
KS88xx

 Linux 2.4 / 2.6 Linux 2.4 / 2.6 DEF_LINUX KS88xx

PCI bus

 Windows
2000/XP

Windows
2000/XP

_WIN32 KS88xx

1 All the KS88xx drivers are available upon request.
2 Please reference the ps0130.pdf “eZ80Acclaim! ™ flash Microcontrollers eZ80L92 MCU Product Specification“ for

detailed information about the eZ80L92 MCU, via the website www.zilog.com.
3 Please reference “ZiLog TCP/IP Software Suite Programmer’s Guide Reference Manual” (RM000806) for

detailed information about the ZTP, via the website www.zilog.com.
4 Please reference the M16C62_Hardware_Manual for detail information about M16C/62P microprocessor, via the

website www.renesas.com.
5 OpenTCP® is an Open Source project that brings a TCP/IP stack to embedded systems, and available under Open

Source license. The code is supported and distributed via the website www.opentcp.org. Information about OpenTCP
license may also be obtained by visiting http://www.opentcp.org/license.txt. Please reference the
OpenTCP_App_Note manual for detail information about OpenTCP protocol stack microprocessor via the Micrel
KS88xxM Eval Kit CD-ROM.

6 Please reference the e602201_sh7751 “Hitachi SuperHÔ RISC engineSH7751 Series SH7751,SH7751R Hardware
Manual “for detail information about SH7751R microprocessor via the website www.renesas.com.

7 VxWorks ® and Tornado ® are license from Wind River System, Inc. For contact information, please visit the
website www.windriver.com.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 11 -

KSZ88xx Programming Guide

Table 2-3. Driver Platform Support

The following sections are KS88xx drivers block diagram of the some of
platforms we provided.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 12 -

KSZ88xx Programming Guide

2.3.1 M16C With OpenTCP Driver Block Diagram

 CLI Interface
OS Platform Dependent

OpenTCP Protocol
Stack

OS Platform
Dependent

 • Read from KSZ88xx registers.
• Write to KSZ88xx registers.
• Transmit packets to KSZ88xx

device.
• More …

Files:
ks884x\OpenTCP_104\uart\

cliParser.c
ksCliFunc.c

ks884x\OpenTCP_104\ks884x\

ks_diag.c
cliTable.h

Network Device Interface
OS Platform Dependent

• Initialization of
KSZ88xx routine.

• Transmit network
packets routine to
KSZ88xx routine.

• Receive network packets
from KSZ88xx routine.

Files:
ks884x\OpenTCP_104\ks884x\

ethernet_ks884x.c

KSZ88xx Device Driver Interface
OS Platform Independent

• Initialization of KSZ88xx APIs.
• Transmit network packets APIs.
• Receive network packets APIs.
• Switch functions APIs.

Files:
ks884x\OpenTCP_104\ks884x\

hardware.c
ks_config.c
ks_stp.c
ks_table.c
ks_vlan.c
ks_rate.c
ks_qos.c
ks_mirror.c

Access KSZ88xx Registers Interface
OS Platform Dependent With Compiler Option Definition

“M16C_62P”
• Read register by 8\16\32 bit data width.
• Write value to registers by 8\16\32 bit
data width.

Files:
ks884x\OpenTCP_104\ks884x\

target.c
target.h

KSZ88xx Device

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 13 -

KSZ88xx Programming Guide

2.3.2 SH7751R With VxWorks OS Driver Block Diagram

 VxWorks Shell Command Interface
OS Platform Dependent

VxWorks

OS Platform
Dependent

 • Read from KSZ88xx registers.
• Write to KSZ88xx registers.
• Transmit packets to KSZ88xx

device.
• More …

Files:
target\config\ks884x\

ks_diag.c
cliTable.h

Network Device Interface
OS Platform Dependent

• Initialization of
KSZ88xx routine.

• Transmit network
packets routine to
KSZ88xx routine.

• Receive network packets
from KSZ88xx routine.

Files:
Target\config\ks884x\

ks884xEnd_shBus.c (for Generic Bus)

ks884xEnd.c (for PCI Bus)

KSZ88xx Device Driver Interface
OS Platform Independent

• Initialization of KSZ88xx APIs.
• Transmit network packets APIs.
• Receive network packets APIs.
• Switch functions APIs.

Files:
target\config\ks884x\

hardware.c
ks_config.c
ks_stp.c
ks_table.c
ks_vlan.c
ks_rate.c
ks_qos.c
ks_mirror.c

Access KSZ88xx Registers Interface
OS Platform Dependent With Compiler Option Definition

“DEF_VXWORKS”
• Read register by 8\16\32 bit data width.
• Write value to registers by 8\16\32 bit
data width.

Files:
target\config\ks884x\

target.c
target.h

KSZ88xx Device

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 14 -

KSZ88xx Programming Guide

2.3.3 Linux OS Driver Block Diagram

 Linux

OS Platform
Dependent

Network Device Interface
OS Platform Dependent

• Initialization of
KSZ88xx routine.

• Transmit network
packets routine to
KSZ88xx routine.

• Receive network packets
from KSZ88xx routine.

Files:
linuxISA\linuxPCI

device.c
transmit.c
interrupt.c

KSZ88xx Device Driver Interface
OS Platform Independent

• Initialization of KSZ88xx APIs.
• Transmit network packets APIs.
• Receive network packets APIs.
• Switch functions APIs.

Files:
common\

hardware.c
ks_config.c
ks_stp.c
ks_table.c
ks_vlan.c
ks_rate.c
ks_qos.c
ks_mirror.c

Access KSZ88xx Registers Interface
OS Platform Dependent With Compiler Option Definition

“DEF_LINUX”
• Read register by 8\16\32 bit data width.
• Write value to registers by 8\16\32 bit
data width.

Files:
common\

target.c
target.h

KSZ88xx Device

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 15 -

KSZ88xx Programming Guide

2.3.4 Definitions to Generate a Particular KS88xx Driver

The KS88xx driver can be built for different sets of drivers:

• KS8841 driver for KSZ8841M/KSZ8861M generic bus device
• KS8841 driver for KSZ8841P PCI bus device
• KS8842 driver for KSZ8842M/KSZ8862M generic bus device
• KS8842 driver for KSZ8842P PCI bus device

The drivers are designed to operate the KSZ88xx devices and demonstrate
their hardware features. They share some common code that is called the
KS884X library. This library provides an application programming
interface to program the KSZ88xx hardware. Because the library code is
shared in several platforms, the drivers may not run efficiently. To
increase performance, the conditional INLINE can be defined to put some
functions inline.

The generic version of the KS884X driver is used for generic bus. It uses
a list of banks to access registers.

The PCI version of the KS884X driver is used for PCI bus. It uses a flat
address space to access registers. It uses lists of descriptors to send
and receives packets.

There are some define identifiers that must be defined from the compiler
options to generate a particular driver for a particular device.

DEF_KS8841

DEF_KS8842

KS_ISA_BUS

KS_ISA

KS_PCI_BUS

KS_PCI

Driver

Yes

No

Yes

Yes

No

No

KSZ8841/8861
Generic Bus
Driver

Yes

No

No

No

Yes

Yes

KSZ8841
PCI Bus
Driver

No

Yes

Yes

Yes

No

No

KSZ8842/8862
Generic Bus
Driver

No

Yes

No

No

Yes

Yes

KSZ8842
PCI Bus
Driver

Table 2-3-4. Definitions to Generate a Particular KSZ88xx Driver

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 16 -

KSZ88xx Programming Guide

3 Mapping KSZ88xx Device to Host CPU Memory Area

There are different ways for host CPU system to map KSZ88xx device base
memory address to system memory address when it is generic bus interface
or PCI bus interface.

Note: Mapping KSZ88xx device to the host CPU memory address is a major

important job and more difficult than port KS88xx driver.
 User need to configure host CPU bus control to meet all the KSZ88xx

timer requirements in order to read\write to the device.

3.1 Mapping KSZ88xxM Generic Bus Device to Host CPU Memory
Area

3.1.1 Assign Base Memory Address to the Device

The KSZ88xx with generic bus interface is an external device. It can be
mapped to either memory space or I/O space on the host CPU memory.

However, the I/O space is accessed using special I/O instructions on some
host CPU platforms.

The following processes are mapping KSZ88xxM to a host CPU memory space:

- Configures one of available CS (Chip Select) on your host CPU
processor to access a external device.

- Configures the CS data width according to your KSZ88xxM device generic
data bus, 8, 16, or 32 bits.

- Configures the CS wait state according to KSZ88xxM hardware timing
specification.

- Configures the CS memory base address according to KSZ88xxM Base
Address Register (BAR). The BAR holds the base address for decoding a
device access, and must be the same as the CS memory base address.

- Configures the CS memory size large enough for KSZ88xxM device (16
bytes).

- Sets the CS memory base address to KSZ88xxM hardware structure
phw->m_ulVIoAddr.

For example,

• Mapping KSZ88xxM device to Renesas M16C/62P platform (16bit generic
bus).

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 17 -

KSZ88xx Programming Guide

- Selects CS2 to map KSZ88xxM memory space.

- Sets M16C/62P "byte" pin pulled low and this will set the external bus
as a 16-bit bus.

- Configures CS2 to 3 wait states.

- Configures CS2 memory base address to 0x10000, and KSZ88xxM is mapped
to address 0x10300. KSZ88xxM Base Address Register (BAR) is 0x0300.

- Sets phw->m_ulVIoAddr = 0x10300.

• Mapping KSZ88xxM device to Renesas SH7751R platform (32bit generic
bus).

- Selects CS4 (Expansion Area4) to map KSZ88xxM memory space.

- Sets CS4 to 32-bit bus size. And also configure CS4 to “byte control
mode” to allow accessing KSZ88xxM by 8-bit, 16-bit, or 32-bit.

- Configures CS4 to 3 wait states.

- Configures CS4 memory base address to logical address 0xB0000000 and
KSZ88xxM is mapped to logical address 0xB0000000. KSZ88xxM Base
Address Register (BAR) is 0x0000.

- Sets phw->m_ulVIoAddr = 0xB0000000.

• Mapping KSZ88xxM device to ZiLog eZ80L92 platform (8bit generic bus).

- Selects CS3 to map KSZ88xxM memory space.

- Configures CS3 to 0 wait states.

- Configures CS3 memory base address to 0x100000 and KSZ88xxM is mapped
to address 0x100000. KSZ88xxM Base Address Register (BAR) is 0x0000.

- Sets phw->m_ulVIoAddr = 0x100000.

3.1.2 Connecting KSZ88xxM Device Interrupt to Host CPU Interrupt
Source

KSZ88xxM device interrupt source are level trigger-–active low.
Configure KSZ88xxM interrupt pin to one of your host CPU interrupt
source.

The following processes are connecting KSZ88xxM interrupt source to a
host CPU interrupt source:

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 18 -

KSZ88xx Programming Guide

- Selects a specified interrupt source from your host CPU according to
KSZ88xx BSP board design.

- Configures the interrupt source to level trigger active low.

- Connects the KSZ88xxM ISR routine to a specified interrupt vector.

For example,

• Connecting KSZ88xxM interrupt to Renesas M16C/62P platform.

- Selects INT2 as host CPU interrupt source.

- Configures INT2 as priority level 4, falling edge triggered.

- Connects KSZ88xxM ISR routine ks884xIntr() to vector table interrupt
number 31.

• Connecting KSZ88xxM interrupt to Renesas SH7751R platform.

- Selects SLOT_IRQ1 as host CPU interrupt source.

- Configures SLOT_IRQ1 as priority level 2, active low edge triggered.

- Connects KSZ88xxM ISR routine ks8842xEndSHInt() to vector table
interrupt number 29.

• Connecting KSZ88xxM interrupt to ZiLog eZ80L92 platform.

- Selects GPIO PD5 as host CPU interrupt source.

- Configures GPIO PD5 as active low triggered.

- Connects KSZ88xxM ISR routine emacisr() to vector table interrupt
number 0x50.

3.2 Assign PCI Memory Space for KSZ88xxP PCI Bus Device

The KSZ88xxP with PCI bus interface implement PCI v2.2 bus protocols and
configuration space. It supports bus master reads and writes to CPU
memory, and CPU access to on-chip register space. When the CPU reads
And writes the configuration registers of the KSZ88xxP, it is as a slave.
So the KSZ88xxP can be either a PCI bus master or slave.
The PCI bus interface also manages interrupt generation for a host
processor.

When the KSZ88xxP target is first powered on, the configuration software,
which is frequently referred to as the PCI bus enumerator that provided
by OS, must scan the PCI bus to determine what PCI devices exit and what
configuration requirements they have.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 19 -

KSZ88xx Programming Guide

The PCI bus enumerator reads a subset of a device’s configuration
registers in order to determine the presence of the device and its type.
Having determined the presence of the device, the software then accesses
the device’s other configuration registers to determine how many blocks
of memory and/or IO space the device requires. Since KSZ88xxP PCI device
is operation on memory base only, it then programs the device’s memory
address to its configuration registers CBMA.

Since the KSZ88xxP device indicates usage of a PCI interrupt request line
(via its configuration registers CFIT), The PCI bus enumerator also
programs it with routing information indicating what system interrupt
request (IRQ) line the device’s PCI interrupt request line is routed to
by the system.

The following processes are mapping KSZ88xxP to a host CPU PCI memory
space:

- The PCI bus enumerator scans all the PCI devices on the system PCI
bus.

- The PCI bus enumerator assigns the KSZ88xxP PCI device memory base
address (via its configuration registers CBMA).

- The PCI bus enumerator routes the KSZ88xxP PCI interrupt request line
to system interrupt request (IRQ).

- The driver configures the rest of KSZ88xxP PCI configuration register.

- Sets PCI device memory base address (CBMA) to KSZ88xxP hardware
structure phw->m_ulVIoAddr.

• The PCI bus enumerator in vxWorks OS platform is pciAutoConfig()from
VxWorks PCI Library.

• The PCI bus enumerator is included in the kernel of the Linux OS
platform.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 20 -

KSZ88xx Programming Guide

4 KSZ88xx Device Initialization

The initialization routine is the first routine in the hardware-specific
sublayer that the system calls during initialization. The purpose of
this routine is to prepare the KSZ88xx device and the software driver for
immediate use by the system.

The most of initialization functions are same for both generic bus
interface and PCI bus interface of the KSZ88xx. But, the device for PCI
bus interface, it needs additional initializations, such as for PCI
Configuration Space registers, and device’s DMA transmit\receive
descriptors list.

4.1 KSZ88xxM Generic Bus Interface Device Initialization

4.1.1 Register Setting for Switch

This section describes the typical register settings for the switch
function with generic bus interface. For most of the switch registers,
just use the default value. The following table only describes the bit
setting other than the default value.

Register Name [bit] 8 Description
SGCR3 [5] Enable Switch MII flow control. Flow control between QMU and the host port

of the switch.
SIDER [0] Set 1 to start the switch function9.

Table 4-1-1. Typical Switch Register Settings for Generic Bus

4.1.2 Register Setting for Transmit

This section describes the typical register settings for transmitting
packets from CPU processor to KSZ88xx10 with generic bus interface.

Register Name[bit] Description
TXCR [3] Enable transmit flow control. The KSZ88xx will transmit a PAUSE frame

when the Receive Buffer capacity has reached a threshold level that may cause
the buffer to overflow.

TXCR [2] Enable transmit padding. The KSZ88xx will automatically add a padding field

8 Using “Register Name[n]” to indicate bit number in the Register. E.g. “TXCR [3] “is bit 3 of TXCR

Transmit Control register.
9 Start switch function is for KS8842/KSZ8862 only.
10 KZS88xx means KSZ8841M. KSZ8842M, KSZ8861M, or KSZ8862M device.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 21 -

KSZ88xx Programming Guide

to a packet before transmits to network if packet from CPU port is shorter than
64 bytes.

TXCR [1] Enable transmit CRC. The KSZ88xx will automatically add CRC checksum
field to the end of a transmit packet from CPU port.

TXCR [0] Enable transmit. Place KSZ884x transmits processor in running state. Software
driver can start sending packet to the KSZ88xx.

ETXR [0] Write value 1 to set early transmit threshold for 64-byte.
ETXR [7] Enable early transmit function if you want to perform the early transmit11.
IER [14] Enable transmit interrupt.
IER [12] Enable transmit underrun interrupt12.

Table 4-1-2. Typical Transmit Register Settings for Generic Bus

4.1.3 Register Setting for Receive

This section describes the typical register settings for receiving
packets from KSZ88xx to CPU processor with generic bus interface.

Register Name [bit] Description
RXCR [10] Enable receive flow control. The KSZ88xx will acknowledge a PAUSE frame

from the receive interface; i.e., the outgoing packets will be pending in the
TXQ until the PAUSE frame control timer expires.

RXCR [7] Enable KSZ88xx receive all broadcast frames.
RXCR [6] Enable KSZ88xx receive all multicast frames.
RXCR [5] Enable KSZ88xx receive unicast frames that match the 48-bit Station MAC

address.
RXCR [3] Enable KSZ88xx strip the CRC on received frames before sending to CPU

processor.
RXCR [0] Enable Receive. Place KSZ88xx receives processor in running state.
ERXR [4~0] Write value 1 to set early receive threshold for 64-byte.
ERXR [7] Enable early receive function if you want to perform the early receive11.
IER [13] Enable receive interrupt13.
IER [10] Enable receive early interrupt14.

Table 4-1-3. Typical Receive Register Settings for Generic Bus

11 The early transmit or early receive function are valid only on KS8841/KSZ8861.
12 Enable transmit underrun interrupt only when activated early transmit function.
13 Enable receive interrupt if the software driver wants to receive a packet from the interrupt.
14 Enable early receive interrupt only when under early receive function.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 22 -

KSZ88xx Programming Guide

4.1.4 Initialization Routine

Here is an example of routine NE2000Init() to initialize KSZ88xxM-16
device with API that the driver provides on Renesas M16C/62P platform
(16bit generic bus).

 Descriptions Driver API
1 Mapping KSZ88xx to the host CPU memory, and configure Chip Select.

M16c_ports.c /
sys_init()

2 Connecting KSZ88xx device interrupt to the host CPU interrupt source INT2,
and configure INT2 as priority level 4, falling edge triggered.

3 Allocate the KS884x hardware structure.

 PHARDWARE phw;
 phw = (PHARDWARE)calloc (sizeof (HARDWARE), 1);

Set KS884x base memory map address

 phw->m_ulVIoAddr = 0x10300;

ethernet_ks884x.c /
NE2000Init()

4 Allocate the KS884x internal set API structure (for Generic bus).

 struct hw_fn *pks_fn=NULL;
 pks_fn = (struct hw_fn *)calloc (sizeof (struct hw_fn), 1);

ethernet_ks884x.c /
NE2000Init()

5 Set KS884x driver internal API for Generic bus by call

 ksSetApiFunctions(pks_fn);
 phw->m_hwfn = pks_fn;

ethernet_ks884x.c /
ksSetApiFunctions()

/* Sample code to
generic bus API. */

6 Configure user parameters for device receive controller according to the
system OS requested.

phw->m_bPromiscuous=FALSE; //host not receives all the incoming packets
phw->m_bAllMulticast=FALSE; // host not receives multicast packets

ethernet_ks884x.c /
NE2000Init()

7 Reset KSZ88xx device.

 HardwareReset(phw);

ethernet_ks884x.c /
NE2000Init()

hardware.c /
HardwareReset ()

8 Check KSZ88xx device ID.

 HardwareInitialize (phw);

ethernet_ks884x.c /
NE2000Init()

hardware.c /
HardwareInitialize ()

9 Read device station MAC address.
 HardwareReadAddress(phw);

Note: If device station MAC address is not assigned by EEPROM,
 Set driver’s MAC address to device station MAC address.

hardware.c /
HardwareReadAddress ()

10 For KS8842 driver, set device switch MAC address.

ks_config.c /
SwitchSetAddress ()

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 23 -

KSZ88xx Programming Guide

 SwitchSetAddress (phw, phw->m_bOverrideAddress);
11 Clear device MIB counters.

 phw->m_bPortSelect = 0; /* clear Port 1 */
 HardwareClearCounters(phw);
#ifdef DEF_KS8842
 phw->m_bPortSelect = 1; /* clear Port 2 */
 HardwareClearCounters(phw);
#endif
 phw->m_bPortSelect = 2; /* clear Port 3 */
 HardwareClearCounters(phw);

hardware.c /
HardwareClearCounters ()

12 - Initialization KS884x hardware structure default setting for device transmit
control.
° Enable padding (device automatically adds a padding field to packet

shorter than 64 bytes).
° Enable CRC (device automatically adds a CRC checksum field to the

end of a transmit frame).
° Enable QMU transmit flow control.
° Setup Transmit Frame Data Pointer Auto-Increment.
° Enable transmit.

- Initialization KS884x hardware structure default setting for device receive
control.
° Enable receive broadcast frames.
° Enable receive unicast frames.
° Enable receive strip CRC (device strips the CRC on the received

frames).
° Enable QMU receive flow control.
° Setups Receive Data Pointer Auto-Increment.
° Enable receive.

- Enable Switch MII flow control.
- Enable WOL by detection of magic packet.
- Initialization default setting for device port control.
- Initialization default setting for device port PHY control.

° Sets port(s) auto-negotiation.

 HardwareSetup();

hardware.c /
HardwareSetup ()

13 Initialization device transmit/receive control according to KS884x hardware
structure value.

 HardwareEnable(phw);

hardware.c /
HardwareEnable ()

14 Enable device switch engine.

 SwitchEnable (phw, TRUE);

ks_config.c /
SwitchEnable ()

15 Connects KS88xx ISR routine ks884xIntr() to vector table interrupt
 number 31.

 .glb _ks884xIntr
 .lword _ks884xIntr ; INT2 (vector 31)

sect30_62pskp.inc

16 Initialization KS884x hardware structure default setting for device interrupt
mask.

 HardwareSetupInterrupt (phw);

hardware.c /
HardwareSetupInterr
upt ()

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 24 -

KSZ88xx Programming Guide

17 Clear the device interrupts status.

 HardwareAcknowledgeInterrupt(phw, 0xFFFF);

hardware.c /
HardwareAcknowled
geInterrupt ()

18 Enable the device interrupt sources

 HardwareEnableInterrupt(phw);

hardware.c /
HardwareEnableInter
rupt ()

19 Enable the host CPU interrupt source for the KSZ88xx device.

 SYS_INT_ENABLE;

ethernet_ks884x.c /
SYS_INT_ENABLE

20 Get the device port(s) link status.

 SwitchGetLinkStatus(phw);

ks_config.c /
SwitchGetLinkStatus()

21 Show KS88xx BSP information and port(s) link status.
- Bus interface of KSZ8841 or KSZ8842 interface.
- OpenTCP Ethernet driver version.
- KS8842 or KS8841device driver version.
- KSZ8842 or KSZ8841chip ID.
- KS8842 or KS8841 driver reversion.
- KSZ8842 or KSZ8841 base address that is mapped to the CPU memory

space.
- MAC address of KS8841 or KS8842 station.
- IP address of KS8841 or KS8842 target.
- Port Link Status.

showKsBspInfo ();
showKsLinkStatus ();

ethernet_ks884x.c /
showKsBspInfo ()
showKsLinkStatus()

Table 4-1-4. NE2000Init Initialize Routine.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 25 -

KSZ88xx Programming Guide

4.2 KSZ88xx PCI Bus Interface Device Initialization

4.2.1 Register Setting for PCI Configuration Space

This section describes the typical settings for the PCI Configuration
Registers after the PCI bus enumerator assigns the device memory base
address to CBMA register.

Register Name [bit] Description
CFCS [8] System Error Enable. The device asserts SERR_N when it detects a parity error

on the address phase.
CFCS [6] Enable Parity Error Response. The device asserts fatal bus error after it detects

a parity error.
CFCS [2] Master Operation. The device is capable of action as a bus master.
CFCS [1] Memory Space Access. The device responses to memory space accesses.
CFLT [15-8] Set Configuration Latency Timer to 0x80 pc PCI bus clocks.
CFLT [7-0] Set Cache Line Size to 8 32-bit words of the system cache line size.

Table 4-2-1. Typical PCI Configuration Register Settings

4.2.2 Register Setting for Switch

This section describes the typical register settings for the switch
function with PCI bus interface. For most of the switch registers, just
use the default value. The following table only describes the bit
setting other than the default value.

Register Name [bit] Description
SGCR3 [5] Enable Switch MII flow control. Flow control between QMU and the host port

of the switch.
SIDER [0] Set 1 to start the switch function.

Table 4-2-2. Typical Switch Register Settings for PCI Bus

4.2.3 Register Setting for Transmit

This section describes the typical DMA Transmit Control register settings
for transmitting packets from CPU processor to KSZ8841\2P with PCI bus
interface.

Register Name[bit] Description
MDTXC [29-24] Set DMA Transmit Burst Size to 8 of words to be transferred in one DMA

transaction.
MDTXC [18] Enable the KSZ884x generates correct UDP checksum for outgoing UDP/IP

frames.
MDTXC [17] Enable the KSZ884x generates correct TCP checksum for outgoing TCP/IP

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 26 -

KSZ88xx Programming Guide

frames.
MDTXC [16] Enable the KSZ884x generates correct IP checksum for outgoing IP frames.
MDTXC [9] Enable Transmit Flow Control. The KSZ884x will transmit a PAUSE frame

when the Receive Buffer capacity has reached a threshold level that may cause
the buffer to overflow.

MDTXC [2] Enable Transmit Padding. The KSZ884x will automatically add a padding field
to a packet before transmits to network if packet from CPU port is shorter than
64 bytes.

MDTXC [1] Enable Transmit Add CRC. The KSZ884x will automatically add CRC
checksum field to the end of a transmit packet from CPU port.

MDTXC [0] Enable Transmit. Place KSZ884x transmits processor in running state.
Software driver can start sending packet to the KSZ884x.

INTEN [30] Enable Transmit Interrupt. The device issues an interrupt when it completely
transmitted a packet.

INTEN [26] Enable Transmit Stop Interrupt. The device issues an interrupt when its
transmit process stop from running state15.

Table 4-2-3. Typical Transmit Register Settings for the PCI Bus

4.2.4 Register Setting for Receive

This section describes the typical register settings for receiving
packets from KSZ8841\2P to CPU processor with PCI bus interface.

Register Name [bit] Description
MDRXC [29-24] Set DMA Receive Burst Size to 8 of words to be transferred in one DMA

transaction.
MDRXC [18] Enable the KSZ884x checks for correct UDP checksum for incoming UDP/IP

frames.
MDRXC [17] Enable the KSZ884x checks for correct TCP checksum for incoming TCP/IP

frames.
MDRXC [16] Enable the KSZ884x checks for correct IP checksum for incoming IP frames.
MDRXC[9] Enable receive flow control. The KSZ884x will acknowledge a PAUSE frame

from the receive interface; i.e., the outgoing packets will be pending in the
TXQ until the PAUSE frame control timer expires.

MDRXC [6] Enable KSZ884x receive all broadcast frames.
MDRXC [5] Enable KSZ884x receive all multicast frames.
MDRXC [4] Enable KSZ884x receive unicast frames that match the 48-bit Station MAC

address.
MDRXC [0] Enable Receive. Place KSZ884x receives processor in running state.
INTEN [29] Enable Receive Interrupt. The device issues an interrupt when it completely

placed a packet in the one of Receive Descriptor’s buffer.
INTEN [27] Enable Receive Buffer Unavailable Interrupt. The device issues an interrupt

when it indicates that all the Receive Descriptors are owned by Host (out of
received buffers), and can’t acquired by the device.

INTEN [25] Enable Receive Stop Interrupt. The device issues an interrupt when its receivet
process stop from running state15.

Table 4-2-4. Typical Receive Register Settings for PCI Bus

15 If software driver wants to do some debug?

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 27 -

KSZ88xx Programming Guide

4.2.5 Transmit and Receive Descriptor Lists and Data Buffers

The KSZ88xxP transfers received data frames to the receive buffer in host
memory and transmits data from transmit buffers in the host memory.
Descriptors that reside in the host memory act as pointers to these
buffers.

There are two descriptor lists, one for receive, called receive
descriptor, and one for transmit, call transmit descriptor, for the
device Rx\Tx DMA. And the descriptors lists reside in the host physical
memory address space.

After the system allocate the memory for the transmit and receive
descriptors list, it must write the transmit descriptors list base
address with LONG WORD (32bit) alignment to device register TDLB[31-2],
and the receive descriptors list base address with LONG WORD (32bit)
alignment to device register RDLB[31-2]

A descriptor list is forward linked. The last descriptor may point back
to the first entry to create a ring link list structure. For the deep of
ring link list (number of descriptors), it is all dependents on your host
system memory size and overall throughput performance. But it must at
least more than two descriptors for each descriptor list.

There are four control\status registers in each descriptor structures.
The following section describes the default setting for transmit and
receive descriptor list structures to create a ring link list.

• Transmit Descriptors Registers Initial Setting

Register Name [bit] Description
Bit Value
TDES0
[31] 0 Set this descriptor is owned by the host.
TDES1
TDES2
[31-0] 0 Set transmit buffer address point to NULL.
TDES3
[31:0] address Point to next descriptor address.

Table 4-2-5-1. Typical Transmit Descriptors Register Settings for PCI Bus

Here is example of display of transmit descriptors list structure:

Tx Desc 00 addr:0xAC747FE0: TDES0:0x00000000, TDES1:0x00000000, TDES2:0x00000000,

TDES3:0xAC747FF0
Tx Desc 01 addr:0xAC747FF0: TDES0:0x00000000, TDES1:0x00000000, TDES2:0x00000000,

TDES3:0xAC748000
Tx Desc 02 addr:0xAC748000: TDES0:0x00000000, TDES1:0x00000000, TDES2:0x00000000,

TDES3:0xAC748010
Tx Desc 03 addr:0xAC748010: TDES0:0x00000000, TDES1:0x00000000, TDES2:0x00000000,

TDES3:0xAC748020

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 28 -

KSZ88xx Programming Guide

Tx Desc 04 addr:0xAC748020: TDES0:0x00000000, TDES1:0x00000000, TDES2:0x00000000,
TDES3:0xAC748030

•••

Tx Desc 31 addr:0xAC7481D0, TDES0:0x00000000, TDES1:0x00000000, TDES2:0x00000000,

TDES3:0xAC747FE0

• Receive Descriptors Registers Initial Setting

Register Name [bit] Description
Bit Value
RDES0
[31] 1 Set this descriptor is owned by the device.
RDES1
[10-0] 0x000007FC Set to maximum receive buffer size (2044 bytes). User can adjust to their

application need.
RDES2
[31-0] address Set receive buffer address which reside in the system memory.
RDES3
[31:0] address Point to next descriptor address.

Table 4-2-5-2. Typical Receive Descriptors Register Settings for PCI Bus

Here is example of display of receive descriptors list structure:

Rx Desc 00 addr:0xAC748200, RDES0:0x80000000, RDES1:0x000007FC, RDES2:0xAC724084,

RDES3:0xAC748210
Rx Desc 01 addr:0xAC748210, RDES0:0x80000000, RDES1:0x000007FC, RDES2:0xAC724888,

RDES3:0xAC748220
Rx Desc 02 addr:0xAC748220, RDES0:0x80000000, RDES1:0x000007FC, RDES2:0xAC72508C,

RDES3:0xAC748230
Rx Desc 03 addr:0xAC748230, RDES0:0x80000000, RDES1:0x000007FC, RDES2:0xAC725890,

RDES3:0xAC748240
Rx Desc 04 addr:0xAC748240, RDES0:0x80000000, RDES1:0x000007FC, RDES2:0xAC726094,

RDES3:0xAC748250
•••

Rx Desc n addr:0xAC7483F0, RDES0:0x80000000, RDES1:0x000007FC, RDES2:0xAC733900,

RDES3:0xAC748200

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 29 -

KSZ88xx Programming Guide

4.2.6 Initialization Routine

Here is an example of routine pcidev_init() to initialize KSZ88xxP device
with API that the driver provides on Linux platform (PCI bus).

 Descriptions Driver API
1 Static allocate the KS884x hardware structure “phw” in Linux device

structure “struct dev_info”.

device.h

2 The PCI bus enumerator scans all the PCI devices on the system PCI bus.

Linux Kernel

3 The PCI bus enumerator assigns the KSZ88xx PCI device memory base
address.

Linux Kernel

4 The PCI bus enumerator routes the KSZ88xx PCI interrupt request line to
system interrupt request (IRQ).

Linux Kernel

5 The KSZ88xx driver request the device base memory address from Kernel.
And Set KS884x base memory address.

pHardware->m_pVirtualMemory = ioremap(reg_base, reg_len);

device.c /
pcidev_init ()

6 Probe the KSZ88xx PCI device with the PCI bus enumerator given memory
base address pHardware->m_pVirtualMemory by checking device ID.
(1). Reset KSZ88xx device.
 HardwareReset(&hw);

(2). Check KSZ88xx device ID.
 HardwareInitialize(&hw);

device.c /
dev_probe ()

7 Initializes the transmit, receive descriptors list, including allocate receive
data buffer for the receive descriptors list to store incoming packet data.

 AllocateMemory(hw_priv);

device.c /
pcidev_init ()

8 Allocate the KS884x internal set API structure (for PCI bus). And
Set KS884x driver internal API for PCI bus.

static struct hw_fn* ks8842_fn = NULL;
ks8842_fn = kmalloc(sizeof(struct hw_fn), GFP_KERNEL);

ks8842_fn->m_fPCI = TRUE;
ks8842_fn->fnSwitchDisableMirrorSniffer =

SwitchDisableMirrorSniffer_PCI;
…

device.c /
netdev_init()

9 Clear device MIB counters.

 phw->m_bPortSelect = 0; /* clear Port 1 */
 HardwareClearCounters(phw);
#ifdef DEF_KS8842
 phw->m_bPortSelect = 1; /* clear Port 2 */
 HardwareClearCounters(phw);
#endif

device.c /
netdev_open ()

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 30 -

KSZ88xx Programming Guide

 phw->m_bPortSelect = 2; /* clear Port 3 */
 HardwareClearCounters(phw);

10 Configure user parameters for device receive controller according to the
system OS requested.

phw->m_bPromiscuous=FALSE;/*host not receives all the incoming packets
*/
phw->m_bAllMulticast=FALSE; /* host not receives multicast packets */

device.c /
netdev_open ()

11 - Initialization KS884x hardware structure default setting for device transmit
control.
° Enable padding (device automatically adds a padding field to packet

shorter than 64 bytes).
° Enable CRC (device automatically adds a CRC checksum field to the

end of a transmit frame).
° Set DMA Transmit Burst Size to 8 of words to be transferred in one

DMA transaction.
° Enable MAC DMA transmit flow control.
° Enable the device IP checksum generate.
° Enable the device TCP checksum generate.
° Enable the device UDP checksum generate
° Enable transmit.

- Initialization KS884x hardware structure default setting for device receive
control.
° Enable receive broadcast frames.
° Enable receive unicast frames.
° Set DMA Receive Burst Size to 8 of words to be transferred in one

DMA transaction.
° Enable QMU receive flow control.
° Enable the device checks for correct IP checksum.
° Enable the device checks for correct TCP checksum.
° Enable the device checks for correct UDP checksum.
° Enable receive.

- Enable Switch MII flow control.
- Enable WOL by detection of magic packet.
- Initialization default setting for device port control.
- Initialization default setting for device port PHY control.

° Sets port(s) auto-negotiation.

 HardwareSetup();

device.c /
netdev_open ()

hardware.c /
HardwareSetup ()

12 Set base address of Transmit \Receive descriptor to the device register
TDLB, and RDLB.

 HardwareSetDescriptorBase(pHardware,
 phw ->m_TxDescInfo.ulRing,
 phw ->m_RxDescInfo.ulRing);

device.c /
netdev_open ()

13 If device station MAC address is not assigned by EEPROM, Set driver’s
MAC address to device station MAC address.
And, for KS8842 driver, set device switch MAC address.

HardwareSetAddress(phw);

device.c /
netdev_open ()

14 Initialization KS884x hardware structure default setting for device interrupt device.c /

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 31 -

KSZ88xx Programming Guide

mask.

 HardwareSetupInterrupt (phw);

netdev_open ()

15 Initialization device transmit/receive control according to KS884x hardware
structure value.

 HardwareEnable(phw);

device.c /
netdev_open ()

16 Enable device switch engine.

 SwitchEnable (phw, TRUE);

ks_config.c /
SwitchEnable ()

17 Clear the device interrupts status.

HardwareAcknowledgeInterrupt(phw, 0xFFFFFFFF);

hardware.c /
HardwareAcknowled
geInterrupt ()

19 Enable the device interrupt sources

 HardwareEnableInterrupt(phw);

device.c /
netdev_open ()

Table 4-2-6. pcidev_init() Initialize Routine.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 32 -

KSZ88xx Programming Guide

5 KSZ88xx Driver Transmit Packets to Device – Flowchart

The transmit routine is called by the upper layer to transmit a
contiguous block of data through the Ethernet controller.

It is your choice as to how the transmit routine is implemented. The
software may elect to wait until the Ethernet controller is ready to
transmit new data and then synchronously send the new frame, or it may
append the new frame to a queue in software and transmit the data
asynchronously when a transmit completed interrupt signals that the
controller is able to accept a new transmit request. The sample driver
included in this BSP returns FALSE when the KSZ88xx TXQ is not ready to
transmit new frame.

If the Ethernet controller encounters an error while transmitting the
frame, it is your choice as to whether the driver should attempt to
retransmit the same frame or discard the data. The sample driver
included in this BSP does not attempt to retransmit a frame.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 33 -

KSZ88xx Programming Guide

5.1 KSZ88xxM Generic Bus Interface Transmit Routine

There are only a few steps to transmit an Ethernet packet from upper
layer to KSZ88xxM device for the generic bus interface.

1) Check the device QMU TXQ has enough amount of memory for the Ethernet

packet data by read the device register TXMIR (bank 16, offset 0x08).

2) Sets “control word”, and “byte count” to the frame header through a

pair of the device registers QDRL (bank 17, offset 0x08).

3) Write (copy) the Ethernet packet data to the device QMU TXQ through a

pair of the device registers QDRL (bank 17, offset 0x08), and QDRH
(bank 17, offset 0x0A).

3.1) the pseduo code to transmit packet to the KSZ88xxM-8 (8bit

generic bus)

UINT8 *pTxData;
UINT32 addr;
Select bank 17;
while (txPacketLength > 0)
{
 addr = QDRL;
 *(UINT8 *) addr = *pTxData++;
 *(UINT8 *) (addr+1) = *pTxData++;
 *(UINT8 *) (addr+2) = *pTxData++;
 *(UINT8 *) (addr+3) = *pTxData++;
 txPacketLength -=4;
}

3.2) the pseduo code to transmit packet to the KSZ88xxM-16(16bit
generic bus)

UINT16 *pTxData;
UINT32 addr;
Select bank 17;
while (txPacketLength > 0)
{
 addr = QDRL;
 *(UINT16 *) addr = *pTxData++;
 *(UINT16 *) (addr+2) = *pTxData++;
 txPacketLength -=4;
}

3.3) the pseduo code to transmit packet to the KSZ88xxM-32 (32bit
generic bus)

UINT32 *pTxData;
UINT32 addr;
Select bank 17;
while (txPacketLength > 0)
{
 addr = QDRL;

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 34 -

KSZ88xx Programming Guide

 *(UINT32 *) addr = *pTxData++;
 txPacketLength -=4;
}

4) Issue the ENQUEUE transmits command for the device transmits the
Ethernet packet to the Network by write 1 to the device register TXQCR
(bank 17, offset 0x0).

The sample code of transmit routine for M16C microprocessor with
KSZ88xxM-16 under OpenTCP is

UINT8 ksSendFrame (UINT8* pData, UINT16 dataLength, ULONG port);

The first parameter is a pointer to a system data buffer that contains
the data frame to be transmitted. The second parameter is data length.
The third parameter is device destination port that this data frame
transmits to.

The following table describes the detail steps to transmit a data frame
to KSZ88xxM-16 device:

 Descriptions Driver API
1.1 Receive an Ethernet packet from upper layer.

There are three variables are needed from upper layer protocol stack.
 ksSendFrame (pData, dataLength, port);

(1). Packet data pointer (pData). Point to the host CPU system memory space

contains the completed Ethernet packet.
(2). Packet length (dataLength). The Ethernet packet length not includes

CRC.
(3). Destination port number16 (port).

Ethernet_ks884x.c /
ksSendFrame()

1.2 Checking if KSZ8842 TXQ memory is available for this packet.
 HardwareAllocPacket(phw, dataLength);

1.2.1 Read memAvailable = Transmit Memory Available status from

TXMIR[12 - 0].
 1.2.2 If memAvailable < packetDataLength + 4 (2bytes of “Control Word”,

2bytes of “Byte Count”), return FALSE.

Ethernet_ks884x.c /
ksSendFrame()

hardware.c /
HardwareAllocPacket (
)

1.3 Prepares the Transmit “Control Word” and “Byte Count” in the TXQ before
copy the Ethernet packet to it.
 txCntlAndLength = HardwareSetTransmitLength(phw, dataLength);

1.3.1. Set TXIC (transmit interrupt after the present frame has been
transmitted), portNumber to TXDPN 17(Transmit Destination Port
Number), and Transmit Frame ID (can using transmit packet number as
unique Transmit Frame ID) to form the Transmit “Control Word”. Write
the Transmit “Control Word” to QDRL QMU Data Register Low. This
will set the “Control Word” of TXQ Frame Format.

1.3.2 Write packetDataLength + 4 (2bytes of “Control Word”, 2bytes of

Ethernet_ks884x.c /
ksSendFrame()

hardware.c /
HardwareSetTransmitL
ength ()

16 Optional, the value is needed when only transmit packet by direct mode.
17 Set portNumber to TXDPN if transmit packet by direct mode without go through the look up engine.
 Otherwise, set zero to TXDPN if transmit packet by lookup mode.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 35 -

KSZ88xx Programming Guide

“Byte Count”) to QDRH QMU Data Register High. This will set the
“Byte Count” of TXQ Frame Format.

1.4 Then, copy the Ethernet packet to the TXQ.

 1.4.1. Copy Ethernet packet to TXQ by write packet data in DWORD (32-
bit) to the QDRL QMU Data Register Low once a time until
finished entire packet.

HW_WRITE_BUFFER(phw, REG_DATA_OFFSET, pData, dataLength);

Ethernet_ks884x.c /
ksSendFrame()

hardware.c /
HW_WRITE_BUFFER
()

1.5 Issue TXQ Command. The QMU will transmit data from TXQ to the Switch.
 HardwareSendPacket(phw);

1.5.1 Set TXQCR[0] to 1.
1.5.2 Free the system memory by pPacketData.
1.5.3. Return from routine as OK if checking Device transmits the packet

status by interrupt, otherwise continue.

Ethernet_ks884x.c /
ksSendFrame()

hardware.c /
HardwareSendPacket
()

1.6 Wait until KSZ8842 transmit done.
1.6.1. Read Interrupt Status Register by maximum 100 times if
ISR[14] is not set.

1.6.2. do {Read ISR Interrupt Status Register.}
1.6.3. while ((ISR[14] is not set - transmit is not done) AND
(TimoutCount != 0))
1.6.4. If TimeCount=0 and ISR[14] is not set, something is wrong,
return FALSE from routine.

1.7 Check for status of transmission.
1.7.1. txStatus = Read TXSR Transmit Status Register.
1.7.2. Makes sure the TXFID Transmit Frame ID in the txStatus is same as

you previous send packet’s Transmit Frame ID (see 1.3.1).
1.7.3. If any of TXSR[13,12] is set (transmit fail), update software driver’s

transmit error statistics counter, otherwise
1.7.4. Transmit successful, update software driver’s transmit packets statistics

counter.
1.7.5. Clear Interrupt Status Register by setting ISR[14].

Table 5-1. ksSendFrame Transmit Routine

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 36 -

KSZ88xx Programming Guide

 YES

 NO

 Yes

 NO

1.1. Receive an Ethernet packet from upper layer: pData,
dataLength, port (1:port1, 2:port2)

1.2. Check if KS8842 TXQ memory is available for this packet.
1.2.1 memAvailable=TXMIR[12 – 0]

ksSendFrame ()

1.2.2. memAvailable < (dataLength
+ 4) ?

Return
(FALSE)

1.3. Prepares the Transmit “Control Word” and “Byte Count” in the TXQ before copy the Ethernet packet to it.
1.3.1. UINT16 transmitFrameID;
 UINT8 transmitPacketCount;

transmitFrameID = ((transmitPacketCount++) & 0x001F) | (port << 5) ;
transmitFrameID |= (port << 5); /* if transmit by direct mode */
transmitFrameID |= 0x8000;
Write transmitFrameID to QDRL[15 – 0].

1.3.2. Write (dataLength + 4) to QDRH [15- 0].

1.4. Copy the Ethernet packet to the TXQ.
1.4.1 UINT32 *pData;

while (dataLength > 0) {
 (UINT32 *)QDRL = *pData++;
 dataLength -= 4; }

1.5. Issue TXQ Command. QMU will transmit data from TXQ to the Switch.
1.5.1. TXQCR[0] = 1;
1.5.2. free(pData);

1.5.3. Check Device transmits the
packet status by interrupt mode ?

Return
(TRUE)

Check Device transmit the packet status by
polling mode.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 37 -

KSZ88xx Programming Guide

 YES

TXIS is set

 YES NO
 YES

1.6. Wait until KS8842 transmit done.
1.6.1. TimeOut=100;
1.6.2. do { intStstus = ISR
1.6.3. while (!(intStatus &TXIS) && TimeOut--);

1.6.4. If (Timeout==0) &&
 !(intStatus &TXIS)

1.7. Check for status of transmission.
1.7.1. txStatus = TXSR.
1.7.2. UINT16 txTransmitFrameID;

txTransmitFrameID = TXSR[5- 0];
Make sure receive txTransmitFrameID is same as previous send transmitFrameID (see 1.3.1).

Check Device transmit this frame status by
polling mode.

Return
(Error)

1.7.3.
TXSR[13,12] is

set ?

Transmit Successful.
count[txPacket]++;

1.7.4. Transmit Fail.
count[txError]++;

1.7.5. ISR[14] = 1;

Return

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 38 -

KSZ88xx Programming Guide

5.2 KSZ88xxP PCI Bus Interface Transmit Routine

The PCI version of the transmit routine uses lists of transmit
descriptors to send packets to the device transmit MAC DMA.

There are only a few steps to transmit an Ethernet packet from up layer
to KSZ88xxP device for the PCI bus interface.

1) Search an available transmit descriptor, its OWN bit is owned by the

host (TDES0[31]). Start from current transmit descriptor pointer, move
to next descriptor if current descriptor is not available.

2) Sets this available transmit descriptor’s transmit buffer address

TDES2[31-0] to the output packet buffer address.

3) Sets all the control bits in the TDES1.

 3.1) Write packet length to TDES1[10-0],

3.2) Write 1 to TDES1[31] to enable device generated a interrupt when
this frame has been transmitted.

 3.3) Write transmit destination port number to TDES1[23-20] if
 it available, otherwise, write 0 to TDES1[23-20].
3.4) Write 1 to TDES1[30], and TDES1[29] if this frame contains one

full Ethernet packet.

4) Issue the ENQUEUE transmits command for the device transmits the

Ethernet packet to the Network by write 1 to the device register MDTSC
(offset 0x0).

5) Free the output packet buffer pointer by this transmit descriptor’s

transmit buffer address TDES2[31-0] when the driver received a
transmit done interrupt from the device.

The sample code of transmit routine for the KSZ88xxP under Linux driver
is

 ks8842p_dev_transmit (struct sk_buff* skb, struct net_device* dev);

The first parameter is a pointer to a system data buffer sk_buff
structure that contains the data frame to be transmitted. The second
parameter is Linux network device structure.

The following table describes the detail steps to transmit a data frame
to KSZ88xxP device:

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 39 -

KSZ88xx Programming Guide

 Descriptions Driver API

1.1 Receive an Ethernet packet from upper layer.
There are two variables are needed from upper layer protocol stack.

 ks8842p_dev_transmit (struct sk_buff* skb, struct net_device* dev);

(1). Packet data pointer (skb->data). Point to the host CPU system memory

space contains the completed Ethernet packet.
(2). Packet length (skb->len). The Ethernet packet length not includes CRC.

transmit.c /
ks8842p_dev_transm
it ()

1.2 Search an available transmit descriptor for this packet, its OWN bit
TDES0[31] is owned by the host.

 HardwareAllocPacket(phw, len, num);

1.2.1 Call GetTxPacket() to get next available transmit descriptor for this

packet, and pointer by
 phw ->m_TxDescInfo.pCurrent
1.2.2 Write 1 to the transmit descriptor’s First Segment bit TDES1[30].

transmit.c /
ks8842p_dev_transm
it ()

hardware.c /
HardwareAllocPacket (
)

1.3 Send this packet out to the network.

 send_packet(skb, dev);

1.3.1. Record this available transmit descriptor by “pDma”, the
PDMA_BUFFER structure for free the output buffer later.

 pDma = alloc_tx_buf(&hw_priv->m_TxBufInfo, pDesc);

1.3.2. Sets this available transmit descriptor’s transmit buffer address
TDES2[31-0] to the output packet buffer address “skb->data” by call

 SetTransmitBuffer(pDesc, pDma->dma);

1.3.3. Sets the output packet length “skb->len”to this available transmit

descriptor’s transmit buffer size TDES1[10-0] by call

 SetTransmitLength(pDesc, pDma->len);

1.3.4. (1) Write 1 to the transmit descriptor’s Last Segment bit TDES1[29]

to indicate this frame contains one full Ethernet packet.
 (2) Write 1 to the transmit descriptor’s TDES1[31] to enable device

generated a interrupt when this frame has been transmitted.
 (3) Set transmit destination port number “phw ->m_bPortTX” to the

transmit descriptor’s TDES1[23-20].
 (4). Issue the ENQUEUE transmits command for the device transmits

the Ethernet packet to the Network by call

 HardwareSendPacket(phw);

transmit.c /
ks8842p_dev_transm
it ()

transmit.c /
send_packet ()

hardware.c /
HardwareSetTransmitB
uffer ()

HardwareSetTransmitL
ength()

HardwareSendPacket
()

1.4 Free the output packet buffer “pDma”, when the driver ISR received transmit
done INT_TX (INTST[30] interrupt from the device.

interrupt.c /
ks8842p_dev_interru
pt ()

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 40 -

KSZ88xx Programming Guide

 TRANSMIT_DONE(dev);

1.4.1. Get the previous last release buffer “pDma” from pInfo->iLast.
1.4.2. while not finished one full transmit descriptor ring
1.4.3. Start free output packet buffer from “pDma” from pInfo->iLast .
1.4.4. Break the while loop when the transmit descriptor is not owned by

device.
1.4.5. Get next transmit descriptor to free.

transmit.c /
ks8842p_transmit_done
()

Table 5-2. ks8842p_dev_transmit Transmit Routine

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 41 -

KSZ88xx Programming Guide

 No

 Yes

 Yes

1.1 Receive an Ethernet packet from upper layer “skb”
 (1). Packet data pointer skb->data.
 (2). Packet length skb->len.

1.2. Search an available transmit descriptor for this packet, its OWN
bit TDES0[31] is owned by the host.

1.2. HardwareAllocPacket(phw, len,
num);

Free the skb.
Return

(FALSE)

1.3. Send this packet out to the network.
 Send_packet (skb, dev);

Return
(TRUE)

ks8842p_dev_transmit ()

if (IntEnable & INT_TX)

1.4. Start to free the output buffer from the transmit descriptors list until the transmit
descriptor is not owned by the device.

 TRANSMIT_DONE(dev);

ks8842p_dev_interrupt ()
HardwareReadInterrupt(pHardware, &IntEnable);

Return

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 42 -

KSZ88xx Programming Guide

6 KSZ88xx Driver Receive Packets from Device – Flowchart

It is your choice as to how the driver receives data frames from the
KSZ88xx device either as a result of polling or servicing an interrupt.
When an interrupt is received, the OS invokes the interrupt service
routine that is in the interrupt vector table.

If your system has OS support, to minimize interrupt lockout time, the
interrupt service routine should handle at interrupt level only those
tasks that require minimum execution time, such as error checking or
device status change. The routine should queue all the time-consuming
work to transfer the frame from the KSZ88xx RXQ into system memory at
task level.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 43 -

KSZ88xx Programming Guide

6.1 KSZ88xxM Generic Bus Interface Receive Routine

It just takes a few steps to receive an Ethernet packet from KSZ88xxM
device to upper layer when the interrupt serve routine detect a received
frame interrupt on the generic bus interface.

1) While loop to do following steps until there is no receive packet data

in the device QMU RXQ by read the device register RXMIR (bank 16,
offset 0x0A).

2) Checks the received frame status by read the device register RXSR

(bank 18, offset 0x04) or read “status word” from the received frame
header through a pair of the device registers QDRL (bank 17, offset
0x08).

3) If it is a valid and good frame, get the received frame length by read

the device register RXBC (bank 18, offset 0x06) or read “byte count”
from the received frame header through a pair of the device registers
QDRL (bank 17, offset 0x08).

4) Read (copy) the Ethernet packet data from the device QMU RXQ through a

pair of the device registers QDRL (bank 17, offset 0x08), and QDRH
(bank 17, offset 0x0A) to a already allocated system memory buffer.

4.1) the pseduo code to receive a packet from the KSZ88xxM-8 (8bit

generic bus)

UINT8 *pRxData;
UINT32 addr;
Select bank 17;
while (rxPacketLength > 0)
{
 addr = QDRL;
 *pRxData++ = *(UINT8 *) addr;
 *pRxData++ = *(UINT8 *) (addr+1);
 *pRxData++ = *(UINT8 *) (addr+2);
 *pRxData++ = *(UINT8 *) (addr+3);
 rxPacketLength -=4;
}

4.2) the pseduo code to receive a packet from the KSZ88xxM-16(16bit
generic bus)

UINT16 *pRxData;
UINT32 addr;
Select bank 17;
while (rxPacketLength > 0)
{
 addr = QDRL;
 *pRxData++ = *(UINT16 *) addr;
 *pRxData++ = *(UINT16 *) (addr+2);
 rxPacketLength -=4;
}

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 44 -

KSZ88xx Programming Guide

4.3) the pseduo code to receive a packet from the KSZ88xxM-32 (32bit
generic bus)

UINT32 *pRxData;
UINT32 addr;
Select bank 17;
while (rxPacketLength > 0)
{
 addr = QDRL;
 *pRxData++ = *(UINT32 *) addr;
 rxPacketLength -=4;
}

5) Issue the RELEASE frame command for the device to release this frame
buffer memory space from QMU RXQ by write 1 to the device register
RXQCR (bank 17, offset 0x02).

The sample driver provides in the BSP is based on Renesas M16C/62P
OpenTCP platform. There is no OS involved; the receive routine is called
at interrupt level18.

The following table describes the detail steps to receive a data frame
from the KSZ88xxM-16 device:

 Descriptions Driver API
2.1 Checking if received Ethernet packets by polling mode.

2.1.1. While loop reading ISR Interrupt Status Register - ISR.

 NE2000ReceiveFrame();

gui_demo.c /
main()

ethernet_ks884x.c /
NE2000ReceiveFrame
()

2.2 Checking if received Ethernet packets by interrupt driven ks884xIntr ().
2.2.1. intStatus= read Interrupt Status Register - ISR.

 HardwareReadInterrupt(phw, &wIntStatus);

ethernet_ks884x.c /
ks884xIntr ()

hardware.c /
HardwareReadInterru
pt ()

2.3 If ISR [14] is set, do 1.7 processes.
 HardwareTransmitDone(phw);
 HardwareAcknowledgeTransmit(phw);

ethernet_ks884x.c /
ks884xIntr ()

hardware.c /
HardwareTransmitDone
();
HardwareAcknowledge
Transmit();

2.4 If ISR[13] is set, call ksReceiveFrame()
2.4.1 Checking if QMU have put Receive Packet Data in the RXQ by read

RXMIR[12 – 0]. rxPacketDataAvailable = RXMIR[12 – 0].
 HardwareReceiveMoreDataAvailable (phw);

2.4.2 If no Receive Packet Data in the RXQ (rxPacketDataAvailable <= 0),

exist while loop.

Ethernet_ks884x.c /
ksReceiveFrame ()

hardware.c /
HardwareReceiveMore
DataAvailable();

18 We also provide others platform drivers which receive routines are done at task level.
19 Indicated the source port where the received packet was received if upper layer protocol requested.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 45 -

KSZ88xx Programming Guide

2.4.3 Checking the status of the current received frame by read RXSR.
 HardwareReceiveStatus(phw, &rxCntl, &rxLength);

2.4.4 If RXSR [15] (Receive Frame Valid) is not set, go to 2.4.14.
2.4.5 Otherwise, if any of RXSR [4, 2, 1, 0] (Receive errors) is set, go to

2.4.14.
2.4.6 Received the packet without error, update software driver’s receive

packet type statistics counter.
2.4.7 Get Received Packet Length and Received Source Port Number from

QDRL QMU Data Register Low (read 4-byte).
 rxPacketLength = “Byte Count”, and subtract by 4-byte of CRC if

RXCR[3] is not set.
 rxPortNo = RXSPN;

 rxPacketLength =HardwareReceiveLength(phw);
 rxPortNo = phw->m_bPortRX;

2.4.8 Allocate a system memory space (address by pRxData) which big

enough to hold a Ethernet packet.
2.4.9 Copy the received Ethernet packet from RXQ to system memory space

by read DWORD (32-bit) from QDRL QMU Data Register Low once a
time until finished entire frame (count by rxPacketLength) .

 Update the software driver receive packet statistics counter.

 HardwareReceiveBuffer(phw, & pPacketData rxPacketLength);

2.4.10 Pass received Ethernet packet data pointer by pPacketData to the

upper layer protocol along with Receive Source Port information
19(“rxPortNo”) to process.

2.4.11 Release the RXQ memory by set RXQCR[0] to 1.

 HardwareReleaseReceive(phw);

2.4.12 Clear Interrupt Status Register by set ISR [13] to 1.

 HardwareAcknowledgeReceive(phw);

2.4.13 Go to 2.4.1. Return.
2.4.14 Updates the software driver receive packet error type statistics

counters.
2.4.15 Release the RXQ memory by set RXQCR[0] to 1.
2.4.16 Clear Interrupt Status Register by set ISR [13] to 1.

hardware.c /
HardwareReceiveStatus
();

hardware.c /
HardwareReceiveLen
gth ();

hardware.c /
HardwareReceiveBuffer
();

hardware.c /
HardwareReleaseRec
eive ();

2.5 If ISR[7] bit is set,
2.5.1. Record the error count for debug.
2.5.2. Clear Interrupt Status Register by set ISR [7] to 1.

ethernet_ks884x.c /
ks884xIntr ()

Table 6-1. ksReceiveFrame() Receive Routine

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 46 -

KSZ88xx Programming Guide

NO

 YES

 NO

 YES

NO

 YES

 YES

 NO

2.1. Checking received Ethernet
packets by polling mode.

2.2. ISR

2.2.1. intStatus = ISR.

2.3. ISR[14]
?

2.3. Do same thing as 1.7

2.4. ISR[13] ?

2.4.3. rxStats = RXSR.

2.4.4. RXCV ?

2.4.5. RXMR or
RXTL or
RXRF or
RXCE ?

2.1.14

RXEFI
E

count[rxError]++;

2.4.1. Checking if QMU have put the Receive Packet Data in the RXQ

 rxPacketDataAvailable = RXMIR[12 – 0];

2.4.2.
rxPacketDataAvailable > 0

2.4.6. if RXBF count[rxBroadcast]++;
 if RXMF count[rxMulticast]++;
 if RXUF count[rxUnicast]++;

ISR[13] =
1;

2.4.1.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 47 -

KSZ88xx Programming Guide

2.4.8. UINT32 *pRxData;
pRxData = malloc (sizeof (ETHERNET_PACKET_SIZE));

2.4.9. while (rxPacketLength > 0) {
*pRxData++ = (UINT32 *)QDRL;
 rxPacketLength -=4; }
count[rxPacket]++;

2.4.10. pass pRxData and rxPortNo to upper layer protocol

2.4.11. RXQCR[0] = 1;
2.4.12. ISR[13] = 1;

RXEFIE

2.5. RXEFIE ?

Exist ISR

2.5.1. Record the errors count or dump error frame
for debug.

2.4.7.

2.4.14.

2.4.7. 2.4.7. UINT32 rxFrameHeader;
 rxFrameHeader = (UINT32 *) QDRL;
 rxPacketLength = rxFrameHeader >> 16;
 rxPortNo = (rxFrameHeader & 0x0F000000) >> 24;
 if !RXCR[3], rxPacketLength -= 4;

2.4.1.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 48 -

KSZ88xx Programming Guide

6.2 KSZ88xxP PCI Bus Interface Receive Routine

The PCI version of receive routine uses lists of receive descriptors to
receive packets from the device receive MAC DMA.

There are only a few steps to receive an Ethernet packet from KSZ88xxP
device to the upper layer when the interrupt serve routine detect a
received frame interrupt on the PCI bus interface.

1) While loop in the receive descriptors list ring to do following steps

until the receive descriptor’s OWN bit is owned by the device
(RDES0[31]).

2) Checks the received frame status by read the receive descriptor’s

register RDES0[28,27,26,25,19,18,17,16].

3) If it is a good frame, get the received frame length by read the

receive descriptor’s register RDES0[10-0].

4) Get the received frame data buffer pointer (a system memory buffer

that allocated from initialize receive descriptors list) from the
receive descriptor’s register RDSE2[31-0] that the device receive MAC
DMA already put the receive data into it. And pass this buffer pointer
to the upper layer protocol.

5) Allocate a new system memory data buffer, and replace this buffer

pointer to the receive descriptor’s register RDSE2[31-0].

6) Return this receive descriptor to the device receive MAC DMA by set

RDSE0[31] OWN bit to 1.

The sample code of receive routine for the KSZ88xxP under Linux driver is
 dev_rcv_packets(dev);

The following table describes the detail steps to receive a data frame
from the KSZ88xxP device:

 Descriptions Driver API
2.1 Checking if received Ethernet packets by interrupt driven ks884xIntr ().

2.1.1. IntEnable = read Interrupt Status Register - ISR.

 HardwareReadInterrupt(phw, & IntEnable);

2.1.2. If INT_RX (INTST[29] is set, call

 dev_rcv_packets()

interrupt.c /
ks8842p_dev_interru
pt ()

hardware.c /
HardwareReadInterru
pt ()

2.2 While loop for only the full ring of receive descriptors list
 int cnLeft = pInfo->cnAlloc;

interrupt.c /
dev_rcv_packets()

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 49 -

KSZ88xx Programming Guide

 iNext = pInfo->iNext;
 while (cnLeft--)

2.3 2.3.1. Start from the previous last receive descriptor, indicate by

 “pInfo->iNext”, check the next receive descriptor if its OWN bit
RDES0[31] is owned by the host by call

 GetReceivedPacket(pInfo, iNext, pDesc, status.ulData);

 2.3.2. If this receive descriptor is not owned by the host, break from while
loop 2.2.

interrupt.c /
dev_rcv_packets()

hardware.h/
GetReceivePacket()

2.4 2.4.1. If the buffer pointed by this receive descriptor is the last buffer of the
frame by RDES0[29].

 if (status.rx.fLastDesc)

2.4.2. Check the received frame, if it is a good frame,

 if (!status.rx.fError)

interrupt.c /
dev_rcv_packets()

2.5 Get the received frame length from RDES0[10-0], subtract 4-byte CRC

 packet_len = status.rx.wFrameLen - 4;

interrupt.c /
dev_rcv_packets()

2.6 Allocate a new data buffer, and copy the received data buffer from this
receive descriptor RDSE2[31-0] to the new data buffer to make IP header 32
bit alignment for better performance.

 skb = dev_alloc_skb(packet_len + 6);
 skb_reserve(skb, 2);
 memcpy(skb_put(skb, packet_len), pDma->skb->data, packet_len);

interrupt.c /
dev_rcv_packets()

2.7 Pass this new data buffer to the upper layer protocol.

 skb->protocol = eth_type_trans(skb, dev);
 skb->ip_summed = CHECKSUM_NONE;

 netif_rx(skb);

interrupt.c /
dev_rcv_packets()

2.8 Release this receive descriptor to the device, set OWN bit (RDSE0[31]) by
call,

 ReleasePacket(pDesc);

interrupt.c /
dev_rcv_packets()

hardware.h/
ReleasePacket ()

2.9 Increases “iNext” to check the next receive descriptor by call,

 FreeReceivedPacket(pInfo, iNext);

interrupt.c /
dev_rcv_packets()

hardware.h/
ReleasePacket ()

Table 6-2. dev_rcv_packets () Receive Routine

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 50 -

KSZ88xx Programming Guide

 Yes

 Yes

 No

2.1. ISR

2.1.1. intEnable = ISR.
HardwareReadInterrupt(phw, & IntEnable);

2.1.2. INTST[29] ?

2.3.1 Check the next receive descriptor if its OWN bit RDES0[31]
is owned by the host.

 GetReceivedPacket(pInfo, iNext, pDesc, status.ulData);

2.3.2. this receive descriptor is not
owned by the host ?
if (status.rx.fHWOwned)?

2.2. While loop for only the full ring of receive descriptors list
 int cnLeft = pInfo->cnAlloc;
 iNext = pInfo->iNext;
 while (cnLeft--)

2.4

Exist

2.2

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 51 -

KSZ88xx Programming Guide

 No

 Yes

 No

 Yes

2.4

2.4.1. Is it the last buffer of the frame
RDES0[29] ?

if (status.rx.fLastDesc) ?

2.4.2. Is it a good frame ?
 if (!status.rx.fError) ?

2.5. Get the receive frame length from RDES0[10-0], and subtract 4-byte of
CRC.

 packet_len = status.rx.wFrameLen - 4;

2.6. Allocate a new data buffer, and copy the received data buffer from this
receive descriptor RDSE2[31-0] to the new data buffer to make IP header
32 bit alignment for better performance.

 skb = dev_alloc_skb(packet_len + 6);
 skb_reserve(skb, 2);
 memcpy(skb_put(skb, packet_len), pDma->skb->data, packet_len);

2.7. Pass this new data buffer to the upper layer protocol.

 skb->protocol = eth_type_trans(skb, dev);
 skb->ip_summed = CHECKSUM_NONE;

netif rx(skb);

2.8. Release this receive descriptor to the device, set OWN bit (RDSE0[31])

 ReleasePacket(pDesc);

2.9. Increases “iNext” to check the next receive descriptor.

 FreeReceivedPacket(pInfo, iNext);

2.2

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 52 -

KSZ88xx Programming Guide

7 KSZ88xx Driver API Reference

The KS88xx driver contains a rich set of API functions that are used to
configure all the KSZ88xx device features.

Functions within the API are organized within logical groups and
alphabetized within each group. A description of each API group is shown
in Table 7.

Device Accesses APIs Provides functions and macros to read /write device

registers.
Device Initialization APIs For device initializations.

Device Interrupt APIs To handle the device interrupts.

Device Transmit APIs For target host CPU transmits the packet from host system

memory to device.
Device Receive APIs For target host CPU receives the packet from device to the

host system memory.
Set Device PHY APIs Provides functions to configure device PHY.

Set Device Ports APIs Provides functions to configure device port function.

Set Device LinkMD APIs Provides functions to configure device LinkMD.

Set Wake-on-LAN APIs 20 Provides functions to configure device Wake-on-LAN

function.
Set Device STP APIs 21 Provides functions to set Spanning Tree states on the

device.
Set Device VLAN APIs 21 Provides functions to configure VLAN function on the

device.
Set Device Rate Limiting APIs 21 Provides functions to configure broadcast storm protection

and rate limiting control on the device.
Set Device QoS APIs 21 Provides functions to configure QoS function on the

device.
Set Device Mirror APIs 21 Provides functions to configure Port Mirroring function

on the device.
Device Table Accesses APIs 21 Provides functions to read/write device indirect registers.

Table 7. KS88xx Driver API Groups

7.1 Device Accesses APIs

20 This function is only available on KS8841/KSZ8861 device.
21 This function is only available on KS8842/KSZ8862 device.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 53 -

KSZ88xx Programming Guide

This section describes functions and macros that access the KSZ88xx
device registers. These APIs are listed in the Table 7-1.

HardwareReadBuffer Reads the packet data from the device QMU RXQ to the

target system memory.

HardwareReadRegByte Reads a BYTE from the specified bank and register.

HardwareReadRegDWord Reads a LONG (32-bit) from the specified bank and
register.

HardwareReadRegWord Reads a WORD (16-bit) from the specified bank and
register.

HardwareSelectBank Changes the bank of registers.

HardwareWriteRegByte Writes a BYTE to the specified bank and register.

HardwareWriteRegDWord Writes a LONG (32-bit) to the specified bank and register.

HardwareWriteRegWord Writes a WORD (16-bit) to the specified bank and register.

HW_READ_BYTE Reads a BYTE from the specified register at current bank
if device is generic bus interface.

HW_READ_DWORD Reads a LONG (32-bit) from the specified register at
current bank if device is generic bus interface.

HW_READ_WORD Reads a WORD (16-bit) from the specified register at
current bank if device is generic bus interface.

HW_WRITE_BYTE Writes a BYTE to the specified register at current bank if
device is generic bus interface.

HW_WRITE_DWORD Writes a LONG (32-bit) to the specified register at current
bank if device is generic bus interface.

HW_WRITE_WORD Writes a WORD (16-bit) to the specified register at
current bank if device is generic bus interface.

Table 7-1. Device Accesses APIs

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 54 -

KSZ88xx Programming Guide

Synopsis

void HardwareReadBuffer
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bOffset, /* The register offset */
 PULONG pdwData, /* Pointer to a buffer to store the packet

data */
 int length /* The length of the buffer to read */
)

Description

This routine is used to read the LONG (32-bit) of packet data from the
device QMU RXQ to the target system memory pointer by ‘pdwData’ up to
the ‘length’ bytes.

Return

None.

Synopsis

void HardwareReadRegByte
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bBank, /* The bank of registers */
 UCHAR bOffset, /* The register offset */
 PUCHAR pbData /* Pointer to BYTE to store the data */
)

Description

This routine reads a BYTE from specified bank and register. It calls
HardwareSelectBank if the bank is different than the current bank.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 55 -

KSZ88xx Programming Guide

Synopsis

void HardwareReadRegDWord
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bBank, /* The bank of registers */
 UCHAR bOffset, /* The register offset */
 PULONG pwData /* Pointer to LONG to store the data */
)

Description

This routine reads a LONG (32-bit) from specified bank and register.
It calls HardwareSelectBank if the bank is different than the current
bank.

Return

None.

Synopsis

void HardwareReadRegWord
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bBank, /* The bank of registers */
 UCHAR bOffset, /* The register offset */
 PULONG pwData /* Pointer to WORD to store the data */
)

Description

This routine reads a WORD (16-bit) from specified bank and register.
It calls HardwareSelectBank if the bank is different than the current
bank.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 56 -

KSZ88xx Programming Guide

Synopsis

void HardwareSelectBank
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bBank /* The new bank of registers */
)

Description

This routine changes the bank of registers and keeps track of current
bank.

Return

None.

Synopsis

void HardwareWriteRegByte
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bBank, /* The bank of registers */
 UCHAR bOffset, /* The register offset */
 UCHAR bValue /* The data value */
)

Description

This routine writes a ‘bValue’ BYTE to a specified bank and register.
It calls HardwareSelectBank if the bank is different than the current
bank.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 57 -

KSZ88xx Programming Guide

Synopsis

void HardwareReadRegDWord
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bBank, /* The bank of registers */
 UCHAR bOffset, /* The register offset */
 ULONG dwValue /* The data value */
)

Description

This routine writes a ‘dwValue’ LONG (32-bit) to a specified bank and
register. It calls HardwareSelectBank if the bank is different than
the current bank.

Return

None.

Synopsis

void HardwareReadRegWord
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bBank, /* The bank of registers */
 UCHAR bOffset, /* The register offset */
 ULONG wValue /* The data value */
)

Description

This routine writes a ‘wValue’ WORD (16-bit) to a specified bank and
register. It calls HardwareSelectBank if the bank is different than
the current bank.

Return

None.

Synopsis

#define HW_READ_BYTE(phwi, addr, data) \
*data = *((volatile UINT8 *)((phwi)->m_ulVIoAddr + addr))

Description

This macro reads a BYTE to ‘data’ from a specified register ‘addr’.

Note: It reads at current bank if device is generic bus interface.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 58 -

KSZ88xx Programming Guide

Synopsis

#define HW_READ_DWORD(phwi, addr, data) \
*data = *((volatile UINT32 *)((phwi)->m_ulVIoAddr + addr))

Description

This macro reads a LONG (32-bit) to ‘data’ from a specified register
‘addr’.

Note: It reads at current bank if device is generic bus interface.

Synopsis

#define HW_READ_WORD(phwi, addr, data) \
*data = *((volatile UINT16 *)((phwi)->m_ulVIoAddr + addr))

Description

This macro reads a WORD (16-bit) to ‘data’ from a specified register
‘addr’.

Note: It reads at current bank if device is generic bus interface.

Synopsis

#define HW_WRITE_BYTE(phwi, addr, data) \
*((volatile UINT8 *)((phwi)->m_ulVIoAddr + addr)) = (UINT8)(data)

Description

This macro writes a BYTE ‘data’ to a specified register ‘addr’.

Note: It writes at current bank if device is generic bus interface.

Synopsis

#define HW_WRITE_DWORD(phwi, addr, data) \
*((volatile UINT32 *)((phwi)->m_ulVIoAddr + addr)) = (UINT32)(data)

Description

This macro writes a DOUBLE WORD ‘data’ to a specified register ‘addr’.

Note: It writes at current bank if device is generic bus interface.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 59 -

KSZ88xx Programming Guide

Synopsis

#define HW_WRITE_WORD(phwi, addr, data) \
*((volatile UINT16 *)((phwi)->m_ulVIoAddr + addr)) = (UINT16)(data)

Description

This macro writes a WORD ‘data’ to a specified register ‘addr’.

Note: It writes at current bank if device is generic bus interface.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 60 -

KSZ88xx Programming Guide

7.2 Device Initialization APIs

This section describes functions that driver initialize the KSZ88xx
device. These APIs are listed in the Table 7-2.

HardwareDisable Disable the device QMU transmit/receive engine.

HardwareEnable Enable the device QMU transmit/receive engine.

HardwareInitialize Verify KSZ88xx device ID.

HardwareReadAddress Retrieves the device station MAC address.

HardwareReset Software reset the device.

HardwareSetAddress Set the device station MAC address.

HardwareSetup Setup the device for the default proper operation.

SwitchEnable 22 Enable/Disable the device Switch engine.

Table 7-2. Device Initialization APIs

22 Only valid for KS8842/KSZ8862 device.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 61 -

KSZ88xx Programming Guide

Synopsis

void HardwareDisable
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine disables the device QMU transmit/receive engine.

Return

None.

Synopsis

void HardwareEnable
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine enables the device QMU transmit/receive engine.

Note: Call HardwareSetup to setup the device default proper operation

before call HardwareEnable.

Return

None.

Synopsis

BOOLEAN HardwareInitialize
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine checks if the device ID is correct for this driver
(KSZ8841 or KSZ8842).

Return

TRUE – device ID is correct for this driver.
FALSE – device ID is incorrect for this driver.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 62 -

KSZ88xx Programming Guide

Synopsis

BOOLEAN HardwareReadAddress
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine retrieves the MAC address of the device station, and
stores it in pHardware->m_bPermanentAddress.

Return

TRUE – successful.

Synopsis

BOOLEAN HardwareReset
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine performs the device software reset.

Return

TRUE – successful.

Synopsis

void HardwareSetAddress
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine programs the MAC address of the device when the MAC
address is stored in pHardware->m_bOverrideAddress.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 63 -

KSZ88xx Programming Guide

Synopsis

void HardwareSetup
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

- This routine sets the device for proper operation, including default
setting for device transmit/receive control, port control, and PHY link
speed (auto-negotiation).

Return

None.

Synopsis

void SwitchEnable
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 BOOLEAN fEnable /* 1 - enable switch; 0 – disable switch */
)

Description

This routine is used to enable/disable Switch Engine.
Note: Only KSZ8842 device has switch function.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 64 -

KSZ88xx Programming Guide

7.3 Device Interrupt APIs

This section describes functions set and acknowledge the KSZ88xx device
interrupts. These APIs are listed in the Table 7-3.

HardwareAcknowledgeInterrupt Acknowledges the specified device interrupts.

HardwareBlockInterrupt Blocks all device interrupts.

HardwareDisableInterrupt Disables the device interrupt.

HardwareDisableInterruptBit Disables the device specified interrupt bits.

HardwareEnableInterrupt Enables the device interrupt.

HardwareEnableInterruptBit Enables the device specified interrupt bits.

HardwareReadInterrupt Reads the current device interrupt mask.

HardwareSetInterrupt Reset the device interrupt mask, and enable them.

HardwareSetupInterrupt Setup the device interrupt mask for proper operation.

Table 7-3. Device Interrupt APIs

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 65 -

KSZ88xx Programming Guide

Synopsis

void HardwareAcknowledgeInterrupt
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 USHORT wInterrupt /* The interrupt masks to be acknowledged */
)

Description

This routine acknowledges the specified device interrupts.

Return

None.

Synopsis

ULONG HardwareBlockInterrupt
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine blocks all interrupts of the device and returns the
current interrupt enable mask so that interrupts can be restored later.

Return

The current interrupt enable mask.

Synopsis

void HardwareDisableInterrupt
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine disables the device interrupt.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 66 -

KSZ88xx Programming Guide

Synopsis

void HardwareDisableInterruptBit
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 USHORT wInterrupt /* The interrupt masks bit to be disabled */
)

Description

This routine disables the device specified interrupt.

Return

None.

Synopsis

void HardwareEnableInterrupt
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine enables the device interrupts mask from
pHardware->m_wInterruptMask which is previous set by the
HardwareSetupInterrupt.

Note: Call HardwareSetupInterrupt to setup the device default

interrupts mask before call HardwareEnableInterrupt.

Return
None.

Synopsis

void HardwareReadInterrupt
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 PUSHORT pwStatus /* Pointer to USHORT to store the interrupt mask */
)

Description

This routine reads the current device interrupt mask and stores it in
‘pwStatus’.

Return
None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 67 -

KSZ88xx Programming Guide

Synopsis

void HardwareSetInterrupt
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 USHORT wInterrupt /* The interrupt mask to enable */
)

Description

This routine enables the device interrupt mask by ‘wInterrupt’.

Return

None.

Synopsis

void HardwareSetupInterrupt
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine setup the device default interrupt mask to the
pHardware->m_wInterruptMask.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 68 -

KSZ88xx Programming Guide

7.4 Device Transmit APIs

This section describes functions that driver transmits the packets from
host CPU system memory to the KSZ88xx device. These APIs are listed in
the Table 7-4.

HardwareAllocPacket Allocates the device TXQ memory to transmit a packet.

HardwareSendPacket Device transmits a frame from TXQ.

HardwareSetTransmitLength Writes the transmit control and frame length to “Control

Word” and “Byte Count” in the TXQ frame header.

HardwareTransmitDone Handles transmit complete interrupt processing.

HardwareWriteBuffer Writes a transmit frame to the device TXQ.

Table 7-4. Device Transmit APIs

Synopsis

int HardwareAllocPacket
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 Int length /* The length of the transmit frame */
)

Description

This routine allocates the device TXQ memory by the size of ‘length’.

Return

1 – Successful,
0 – Fail, Device TXQ does not have enough memory for the size of

‘length’.

Synopsis

BOOLEAN HardwareSendPacket
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine issues a transmit command to the device. The current

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 69 -

KSZ88xx Programming Guide

transmit frame prepared in the TXQ memory is queued for transmit.

Return

TRUE – Successful,
FALSE – Fail.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 70 -

KSZ88xx Programming Guide

Synopsis

ULONG HardwareSetTransmitLength
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 int length /* The length of the packet. */
)

Description

This routine writes the transmit control word and frame length ‘length’
to “Control Word”, and “Byte Count” in the TXQ frame header of the TXQ.

The transmit control word are consisted of ‘pHardware->m_bPortTX’ and
‘pHardware->m_bTransmitPacket’.

‘pHardware->m_bTransmitPacket’ is for Transmit frame ID field in the
“Control Word”.

‘pHardware->m_bPortTX’ is for Transmit Destination Port Number.
 If pHardware->m_bPortTX is 0, Transmit packet by loopkup mode,
 If pHardware->m_bPortTX is 1, Transmit packet to Port1,
 If pHardware->m_bPortTX is 2, Transmit packet to Port2,
 If pHardware->m_bPortTX is 3, Transmit packet to Port1 and Port2.

Note: Call this routine before copying the Ethernet frame to the TXQ.

Return

4-byte of ““Control Word”, and “Byte Count”

Synopsis

BOOLEAN HardwareTransmitDone
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine handles transmit done interrupt processing.

Return

TRUE if packet is sent successful; otherwise, FALSE.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 71 -

KSZ88xx Programming Guide

Synopsis

void HardwareWriteBuffer
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bOffset, /* The register offset */
 PULONG pdwData, /* Pointer to a transmit data buffer */
 int length /* The length of the buffer to write */
)

Description

This routine is used to write the LONG (32-bit) of packet data from the
target system memory pointer by ‘pdwData’ to the device QMU TXQ up to
‘length’ bytes.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 72 -

KSZ88xx Programming Guide

7.5 Device Receive APIs

This section describes functions that driver receives the packets from
the KSZ88xx device to host CPU system memory. These APIs are listed in
the Table 7-5.

HardwareReceiveBuffer Reads a received frame from the device RXQ.

HardwareReceiveLength Gets the length of the received packet.

HardwareReceiveMoreDataAvailable Gets the total length of received packets in the device

RXQ.

HardwareReceiveStatus Checks the received packet status.

HardwareReleaseReceive Release the received packet memory in the device RXQ.

Table 7-5. Device Receive APIs

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 73 -

KSZ88xx Programming Guide

Synopsis

void HardwareReceiveBuffer
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 void* pBuffer, /* Point to a system memory buffer to store

the received packet */
 int length /* The length of the received frame */
)

Description

This routine reads the LONG (32-bit) of received data from the device
RXQ memory by the size of ‘length’ to the system memory pointer by
‘pBuffer’.

Return
None.

Synopsis

int HardwareReceiveLength
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine returns the length of the received packet.

Return
The length of the received packet.
Return zero if the received packet is not a good packet.

Synopsis

USHORT HardwareReceiveMoreDataAvailable
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine returns the total length of the received packets data in
the device RXQ. If the value is not zero, there are more packets data
in the RXQ.

Return
The length of the total received packets in the RXQ.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 74 -

KSZ88xx Programming Guide

Synopsis

BOOLEAN HardwareReceiveStatus
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 PUSHORT pwStatus, /* Point to USHORT to store received status */
 PUSHORT pwLength /* point to USHORT to store received length */
)

Description

This routine returns the received packet status and length.

Return

TRUE if received packet is a good packet; otherwise, FALSE.

Synopsis

void HardwareReleaseReceive
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine releases the receive packet memory in the device RXQ.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 75 -

KSZ88xx Programming Guide

7.6 Set Device PHY APIs

This section describes functions that driver get or set PHY of the
KSZ88xx device ports. These APIs are listed in the Table 7-6.

HardwareGetLinkStatus Sets the link speed or duplex to the device specific port.

HardwareSetCapabilities Gets the link speed or duplex from the device specific port.

SwitchGetLinkStatus Gets the link status of device ports.

SwitchSetLinkSpeed Sets the link speed or duplex of the device ports.

SwitchRestartAutoNego Restarts the link auto-negotiation of the device ports.

Table 7-6. Device PHY APIs

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 76 -

KSZ88xx Programming Guide

Synopsis

void HardwareGetLinkStatus
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
 UCHAR bPhy, /* The Port index */
 ULONG * pBuffer /* Point to a buffer to store the link

status */
)

Description

This routine is used to get the Link status, Link speed, Link duplex
status, Link Capable status, Link auto-negotiation advertisement
status, and Link partner capabilities status from a specific port
‘bPhy’.
‘pBuffer’ is a 10 array of ULONG buffer that contains the link status
after this routine is called,

pBuffer[0] : Link status
pBuffer[1] : Link Speed status
pBuffer[2] : Link Duplex mode status
pBuffer[3] : Link Capable status
pBuffer[4] : Link Auto-Negotiation Advertisement status
pBuffer[5] : Link Partner Capabilities status
pBuffer[6] : Reserved
pBuffer[7] : Reserved
pBuffer[8] : Reserved
pBuffer[9] : Reserved

For the Link status information ‘pBuffer[0]’:
0 means Link is download
1 means Link is good

For the Link Speed status information ‘pBuffer[1]’:
1000000 means Link Speed is 100Mbps
100000 means Link Speed is 10Mbps

For the Link Duplex mode status information ‘pBuffer[2]’:
0x01 means Link Duplex is full duplex
0x02 means cable is crossed
0x04 means is reversed

For the Link Capable status information ‘pBuffer[3]’:
0x00000001 means 10BaseT full duplex
0x00000002 means 10BaseT half duplex
0x00000004 means 100BaseTX full duplex
0x00000008 means 100BaseTX half duplex
0x00000100 means Link Pause

For the Link Auto-Negotiation Advertisement status information
‘pBuffer[4]’:

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 77 -

KSZ88xx Programming Guide

0x00000001 means 10MBPS full duplex
0x00000002 means 10MBPS half duplex
0x00000004 means 100MBPS full duplex
0x00000008 means 100MBPS half duplex
0x00000100 means Pause frame
0x00010000 means enable Auto MDIX
0x00020000 means Force MDIX
0x00040000 means Auto Polarity

For the Link Partner Capabilities status information ‘pBuffer[5]’:
0x00000001 means 10MBPS full duplex
0x00000002 means 10MBPS half duplex
0x00000004 means 100MBPS full duplex
0x00000008 means 100MBPS half duplex
0x00000100 means Pause frame

Return

None.

Synopsis

void HardwareSetCapabilities
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPhy, /* The PHY (port) index */
 ULONG ulCapabilities /* A set of flags indicating different

capabilities */
)

Description

This routine sets the link speed and duplex to a specific PHY port
‘bPhy’ by its capabilities ‘ulCapabilities’.

The PHY port’s auto-negotiation advertisement link speed, duplex, and
pause frame are set according to ’ulCapabilities’ value:

0x00000001, 10MBPS, full duplex
0x00000002, 10MBPS, half duplex
0x00000004, 100MBPS, full duplex
0x00000008, 100MBPS, half duplex
0x00000100, Pause frame
0x00010000, Auto MDIX (Micrel)
0x00020000, Force MDIX

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 78 -

KSZ88xx Programming Guide

Synopsis

void SwitchGetLinkStatus
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)
Description

This routine reads PHY registers to determine the current link status
Of the device ports, and updates the PHY information to
pHardware->m_PortInfo[Port].

Return
None.

Synopsis

void SwitchSetLinkSpeed
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)
Description

This routine sets the link speed and duplex to the device all ports.
The default is auto-negotiation advertised to 100BT/10BT, full/half
duplex capability.
If ‘pHardware->m_bSpeed’ or ‘pHardware->m_bDuplex’ has been defined
before call this routine, then, the link speed and duplex are set
according to these values:
If pHardware->m_bSpeed is 100, advertised to 100BT only.
If pHardware->m_bSpeed is 10, advertised to 10BT only.
If pHardware->m_bDuplex’ is 1, advertised to full duplex only.
If pHardware->m_bDuplex’ is 2, advertised to half duplex only.

Return
None.

Synopsis

void SwitchRestartAutoNego
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)
Description

This routine restarts auto-negotiation of the device ports.

Return
None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 79 -

KSZ88xx Programming Guide

7.7 Set Device Ports APIs

This section describes functions that driver gets or sets port
configuration of the KSZ88xx device ports. These APIs are listed in the
Table 7-7.

PortConfigBackPressure Enable/disable Back Pressure on a specific port.

PortConfigForceFlowCtrl Enable/disable Force Flow Control on a specific port.

PortGetBackPressure Gets Back Pressure setting status on a specific port.

PortGetForceFlowCtrl Gets Force Flow Control setting status on a specific port.

Table 7-7. Device Ports APIs

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 80 -

KSZ88xx Programming Guide

Synopsis

#define PortConfigBackPressure(pHardware, port, enable)

Description

This macro ‘enable’ (enables or disables) Back Pressure on a specific
port ‘port’.

Return
None.

Synopsis

#define PortConfigForceFlowCtrl (pHardware, port, enable)

Description

This macro ‘enable’ (enables or disables) Force Flow Control on a
specific port ‘port’. If enabled, it is regardless of AN result.

Return
None.

Synopsis

#define PortGetBackPressure (pHardware, port)

Description

This macro gets Back Pressure setting status on a specific port ‘port’.

Return

TRUE - Back Pressure is enabled.
FALSE - Back Pressure is disabled.

Synopsis

#define PortGetForceFlowCtrl (pHardware, port)

Description

This macro gets Force Flow Control setting status on a specific port
‘port’.

Return
TRUE - Force Flow Control is enabled.
FALSE - Force Flow Control is disabled.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 81 -

KSZ88xx Programming Guide

7.8 Set Device LinkMD™ APIs

This section describes functions that driver uses device LinkMD™ feature
to test cable diagnostics capabilities to determine cable length,
diagnose faulty cables, and determine distance to fault. These APIs are
listed in the Table 7-8.

HardwareGetCableStatus Gets the cable status through device LinkMD™ feature on

a specific port.

Table 7-8. Device LinkMD APIs

Synopsis

void HardwareGetCableStatus
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
 UCHAR bPhy, /* The Port index */
 ULONG * pBuffer /* Point to a buffer to store the cable status
*/
)
Description

This routine is used to get the cable status through the device LinkMD™
feature on a specific port ‘bPhy’.
‘pBuffer’ is a 10 array of ULONG buffer that contains the tested cable
status after this routine is called,

pBuffer[0] : cable length
pBuffer[1] : cable status
pBuffer[2] : cable twister pair 1-2 length
pBuffer[3] : cable twister pair 1-2 status
pBuffer[4] : cable twister pair 3-6 length
pBuffer[5] : cable twister pair 3-6 status
pBuffer[6] : cable twister pair 4-5 length (unavailable)
pBuffer[7] : cable twister pair 4-5 status (unavailable)
pBuffer[8] : cable twister pair 7-9 length (unavailable)
pBuffer[9] : cable twister pair 7-9 status (unavailable)

For the cable status information,
0 means cable is unknown
1 means cable is good
2 means cable is crossed
3 means cable is reversed
4 means cable is crossed and reversed
5 means cable is open
6 means cable is short
Return
None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 82 -

KSZ88xx Programming Guide

7.9 Set Wake-on-LAN APIs

This section describes functions that configure device Wake-on-LAN (WOL)
event by receipt of a Magic Packet or a network wake up frame. When
device detects a wake up event, it asserts the PMEN pin to low which
could connect to host system to put the system into a powered state
(working state).

User can configure up to four ‘wake up’ frames. The ‘wake up’ frames are
certain types of packets with specific CRC values that device recognizes
as a ‘wake up’ frame. The specific CRC values are calculated by byte
specified (mask) within 64 byte of the ‘wake up’ packet.

These APIs are listed in the Table 7-9.

HardwareClearWolPMEStatus Clear PME_Status to dessert PMEN pin.

HardwareEnableWolMagicPacket Enable WOL event caused by receipting of a Magic

Packet.

HardwareEnableWolFrame Enable WOL event caused by receipting of a network
‘wake up’ frame.

HardwareSetWolFrameByteMask Configure the byte mask within 64 byte of the ‘wake up’
frame pattern to calculate CRC value.

HardwareSetWolFrameCRC Configure the expected 32bit CRC value of the ‘wake up’
frame pattern.

Table 7-9. Device Wake-on-LAN APIs

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 83 -

KSZ88xx Programming Guide

Synopsis

void HardwareClearWolPMEStatus
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine is used to clear PME_Status to dessert PMEN pin.

Return

None.

Synopsis

void HardwareEnableWolMagicPacket
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine is used to enable the Wake-on-LAN that wake-up signal is
caused by receipting of a Magic Packet.

KSZ8841 device can support D1, D2, or D3 power state by EEPROM setting.
By default, device supports D3 power state without EEPROM setting. The
example here is by default D3 power state.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 84 -

KSZ88xx Programming Guide

Synopsis

void HardwareEnableWolFrame
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UINT32 dwFrame /* whose wake up frame to be enabled (0 -

Frame 0, 1 - Frame 1, 2 - Frame 2, 3 -
Frame 3). */

)

Description

This routine is used to enable the Wake-on-LAN that wake-up signal is
caused by receipting of a network 'wake-up' packet. The device can
support up to four different 'wake-up' frames.

KSZ8841 device can support D1, D2, or D3 power state by EEPROM setting.
By default, device supports D3 power state without EEPROM setting. The
example here is by default D3 power state.

Note: Call HardwareSetWolFrameByteMask and HardwareSetWolFrameCRC to

setup the device proper operation before call
HardwareEnableWolFrame.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 85 -

KSZ88xx Programming Guide

Synopsis

void HardwareSetWolFrameByteMask
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
 UINT32 dwFrame, /* whose wake up frame to be enabled (0 -

Frame 0, 1 - Frame 1, 2 - Frame 2, 3 -
Frame 3). */

 UINT8 bByteMask /* byte number to mask to calculate CRC
value (0 - byte 0, 63 - byte 63). */

)

Description

This routine is used set the byte mask within 64 byte of the 'Wake up'
frame pattern to calculate CRC value.
The device can support up to four different 'wake-up' frames.

Return

None.

Synopsis

void HardwareSetWolFrameCRC
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UINT32 dwFrame, /* whose wake up frame to be enabled (0 -

Frame 0, 1 - Frame 1, 2 - Frame 2, 3 -
Frame 3). */

 UINT32 dwCRC /* Expected 32bit CRC value. */
)

Description

This routine is used set expected 32-bit CRC value of the 'Wake up'
frame pattern.
The device can support up to four different 'wake-up' frames.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 86 -

KSZ88xx Programming Guide

7.10 Set Device STP APIs

This section describes functions that configure device Spanning Tree
function by Spanning Tree states. These APIs are listed in the Table 7-
10.

HardwareInit_STP Initialize the STP support on the device.

PortSet_STP_State Configures the STP state on a specific port.

Table 7-10. Device STP APIs

Synopsis

void HardwareInit_STP
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine initializes the spanning tree support on the device by
write STP multicast address “01:80:C2:00:00:00” to device static MAC
table and set Forward port to host CPU port, Override is TRUE.

Return

None.

Synopsis

void PortSet_STP_State
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort, /* The port index */
 int nState /* The spanning tree state */
)

Description

This routine configures the STP state ‘nState’ on a specific port
‘bPort’.
The ‘nState’ can be Blocking state, Disable state, Listening state,
Learning state, and Forwarding state.

Return
None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 87 -

KSZ88xx Programming Guide

7.11 Set Device VLAN APIs

This section describes functions that configure device VLAN function.
These APIs are listed in the Table 7-11.

HardwareConfigDefaultVID Configures the device default VLAN id.

HardwareConfigPortBaseVlan Configures the device port-base VLAN membership.

PortGetDefaultVID Retrieves the device default VLAN id.

SwitchDisableVlan Disables the device VLAN function.

SwitchEnableVlan Enables the device VLAN function.

SwitchInitVlan Sets the device for the proper VLAN parameters. 23

SwitchVlanConfigDiscardNonVID Configures the device Discard Non PVID packets

function.
SwitchVlanConfigIngressFiltering Configures the device Ingress VLAN filtering function.

SwitchVlanConfigInsertTag Configures the device 802.1q Tag insertion function

SwitchVlanConfigRemoveTag Configures the device 802.1q Tag removal function.

Table 7-11. Device VLAN APIs

23 This functions must been called before other VLAN APIs.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 88 -

KSZ88xx Programming Guide

Synopsis

void HardwareConfigDefaultVID
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
 UCHAR bPort, /* the port index */
 USHORT wVID /* VLAN id value */
)

Description

This routine configures the port-base default VLAN ID ‘wVID’ to a
specific port ‘bPort’.

Return
None.

Synopsis

void HardwareConfigPortBaseVlan
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
 UCHAR bPort, /* The port index */
 UCHAR bMember /* The port-base VLAN membership */
)

Description

This routine configures the port-base VLAN membership ‘bMember’ to a
specific port ‘bPort’.

Return
None.

Synopsis

void PortGetDefaultVID
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort, /* the port index */
 USHORT pwVID /* Pointer to USHORT to store VLAN id */
)

Description

This routine retrieves the port-base default VLAN ID from a specific
port ‘bPort’.

Return
None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 89 -

KSZ88xx Programming Guide

Synopsis

void SwitchDisableVlan
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine disables the device 802.1q VLAN mode.

Return

None.

Synopsis

void SwitchEnableVlan
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine enables all the device VLAN functions to all the ports,
including

 - Create VLAN entry for port-base VLAN id in the VLAN table.
 - Enables Unicast port-VLAN mismatch discard (all packets can not

cross VLAN boundary)(SGCR2), the device will discard packets whose
incoming port and outgoing port is not in the Port VLAN Membership
(PnCR224).

 - The last step enables the device 802.1q VLAN mode (SGCR2).

Return

None.

24 n is 1, 2, 3.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 90 -

KSZ88xx Programming Guide

Synopsis

void SwitchInitVlan
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine initializes the proper VLAN parameters, like port-base
default VLAN id, and port-base Port VLAN Membership to the default
value.

Return

None.

Synopsis

void SwitchVlanConfigDiscardNonVID
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
 UCHAR bPort, /* the port index */
 BOOLEAN fSet /* TRUE, enable; FALSE, disable. */
)

Description

This routine configures the Discard Non PVID packets on a specific port
‘bPort.
If enabled, the device will discard packets whose VLAN id does not
match ingress port-base default VLAN.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 91 -

KSZ88xx Programming Guide

Synopsis

void SwitchVlanConfigIngressFiltering
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
 UCHAR bPort, /* the port index */
 BOOLEAN fSet /* TRUE, enable; FALSE, disable. */
)

Description

This routine configures the Ingress VLAN filtering function on a
specific port ‘bPort.
If enabled, the device will discard packets whose VLAN id membership
in the VLAN table bits [18:16] does not include the ingress port that
received this packet.

Return

None.

Synopsis

void SwitchVlanConfigInsertTag
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
 UCHAR bPort, /* the port index */
 BOOLEAN fSet /* TRUE, enable; FALSE, disable. */
)

Description

This routine configures the 802.1q Tag insertion function on a specific
port ‘bPort.
If enabled, the device will insert 802.1q tag to the transmit packet
if received packet is an untagged packet. The device will not insert
802.1q tag if received packet is tagged packet.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 92 -

KSZ88xx Programming Guide

Synopsis

void SwitchVlanConfigRemoveTag
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
 UCHAR bPort, /* the port index */
 BOOLEAN fSet /* TRUE, enable; FALSE, disable. */
)

Description

This routine configures the 802.1q Tag removal function on a specific
port ‘bPort.
If enabled, the device will removed 802.1q tag from the transmit packet
if received packet is a tagged packet. The device will not remove
802.1q tag if received packet is untagged packet.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 93 -

KSZ88xx Programming Guide

7.12 Set Device Rate Limiting APIs

This section describes functions that configure the device rate limiting
at the ingress and egress ports including broadcast storm protection.
These APIs are listed in the Table 7-12.

HardwareConfigBroadcastStorm Configures the device broadcast storm threshold.

HardwareConfigRxPriorityRate Configures the device ingress rate limiting at a specific

priority frame on a specific port.

HardwareConfigTxPriorityRate Configures the device egress rate limiting at a specific
priority frame on a specific port.

SwitchDisableBroadcastStorm Disables the device broadcast storm protection on a
specific port.

SwitchDisablePriorityRate Disables the device ingress and egress rate limiting at all
priority frames on a specific port.

SwitchEnableBroadcastStorm Enables the device broadcast storm protection on a specific
port.

SwitchEnablePriorityRate Enables the device ingress and egress rate limiting for all
the priority frames on a specific port.

SwitchInitBroadcastStorm Initializes the device broadcast storm threshold at 1
percent of line rate, and disables the broadcast storm
protection on all the ports.

SwitchInitPriorityRate Initializes the device ingress and egress with no rate
limiting to all priority frames, and disables the device
ingress and egress rate limiting at all priority frames on all
the ports.

Table 7-12. Device Rate Limiting APIs

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 94 -

KSZ88xx Programming Guide

Synopsis

void HardwareConfigBroadcastStorm
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 ULONG percent /* The Broadcast storm threshold in

percent of transmit rate */
)

Description

This routine configures the broadcast storm protection rate at ‘percent’
percent of line rate.

For example, to set broadcast storm protection 1% of line rate, the
calculation is
 148,800 frames/sec * 67 ms/interval X 1% = 99 frames/interval (approx.) = 0x63

Then, set 0x6300 to SGCR3.

Return

None.

Synopsis

void HardwareConfigRxPriorityRate
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort, /* The port index. */
 UCHAR bPriority, /* The priority index to configure */
 ULONG dwRate /* The rate limit in number of Kbps */
)

Description

This routine configures the Ingress data rate limit in the ‘dwRate’ unit
of Kbps for specific priority ‘bPriority’ frame to the ‘bPort’ port.

For example, to set data rate 512 Kbps for priority 2 frames to the port
1, call:
HardwareConfigRxPriorityRate (pHardware, 0, 2, 512);

This routine will configure 0x0400 to P1IRCR.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 95 -

KSZ88xx Programming Guide

Synopsis

void HardwareConfigTxPriorityRate
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort, /* The port index. */
 UCHAR bPriority, /* The priority index to configure */
 ULONG dwRate /* The rate limit in number of Kbps */
)

Description

This routine configures the Egress data rate limit in the ‘dwRate’ unit
of Kbps for specific priority ‘bPriority’ frame to the ‘bPort’ port.

For example, to set data rate 2 Mbps for priority 0 frames to the port 2,
call:
HardwareConfigTxPriorityRate (pHardware, 1, 0, 2048);

This routine will configure 0x0006 to P2ERCR.

Return

None.

Synopsis

void SwitchDisableBroadcastStorm
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index. */
)

Description

This routine disables the broadcast storm protection function on the
‘bPort’ port.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 96 -

KSZ88xx Programming Guide

Synopsis

void SwitchDisablePriorityRate
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index. */
)

Description

This routine disables the Ingress and Egress rate limiting control to all
the priority frames on the ‘bPort’ port.

Return

None.

Synopsis

void SwitchEnableBroadcastStorm
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index. */
)

Description

This routine enables the broadcast storm protection function on the
‘bPort’ port.

Note: This routine also sets “Broadcast Storm Protection” that does not
include multicast packets.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 97 -

KSZ88xx Programming Guide

Synopsis

void SwitchEnablePriorityRate
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index. */
)

Description

This routine enables the Ingress and Egress rate limiting control to all
the priority frames on the ‘bPort’ port.

Note: Call HardwareConfigRxPriorityRate to setup Egress rate limiting,

and HardwareConfigTxPriorityRate to setup Ingress rate limiting
before call SwitchEnablePriorityRate.

Return
None.

Synopsis

void SwitchInitBroadcastStorm
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine initializes the device broadcast storm threshold at 1
percent of line rate, and disables the broadcast storm protection on all
the ports

Return
None.

Synopsis

void SwitchInitPriorityRate
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)
Description

This routine initializes the ingress and egress with no rate limiting to
all priority frames, and disables the device ingress and egress rate
limiting at all priority frames on all the ports.

Return
None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 98 -

KSZ88xx Programming Guide

7.13 Set Device QoS APIs

This section describes functions that configure the device QoS priority
support, including Port-Based priority, 802.1p based priority, and
DiffServ based priority. These APIs are listed in the Table 7-13.

HardwareConfig_TOS_Priority Configures the device TOS of DiffServ based priority.

HardwareConfig802_1P_Priority Configures the device 802.1p based priority .

SwitchConfigPortBased Configures the device Port based priority on a specific

port.

SwitchDisable802_1P Disables the device 802.1p priority of QoS on a specific
port.

SwitchDisableDiffServ Disables the device DiffServ priority of QoS on a specific
port.

SwitchDisableDot1pRemapping Disables the device 802.1p priority re-mapping function on
a specific port.

SwitchDisableMultiQueue Disables the device transmit multiple queues selection on a
specific port.

SwitchEnable802_1P Enables the device 802.1p priority of QoS on a specific
port.

SwitchEnableDot1pRemapping Enables the device 802.1p priority re-mapping function on
a specific port.

SwitchEnableDiffServ Enables the device DiffServ priority of QoS on a specific
port.

SwitchEnableMultiQueue Enables the device transmit multiple queues selection on a
specific port.

SwitchInitPriority Disables all the QoS (Port based, 802.1p based, DiffServ
based) functions.

Table 7-13. Device QoS APIs

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 99 -

KSZ88xx Programming Guide

Synopsis

void HardwareConfig_TOS_Priority
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bTosValue, /* ToS value from 6-bit (bit7 ~ bit2) of ToS

field, range from 0 to 63. */
 USHORT wPriority /* Priority to be assigned */
)

Description

This routine configures the TOS of DiffServ based priority.
The ‘bTosValue’ ToS value (from bit7 ~ bit2 of ToS field, range from 0 to
63) is mapped to transmit priority queue ‘wPriority’ (queue 0 to queue
3).

Ingress packets with be classified to which transmit priority queue
according to the 6-bit of TOS value if DiffServ priority of QoS is
enabled.

Return

None.

Synopsis

void HardwareConfig802_1P_Priority
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bTagPriorityValue, /* The 802.1p tag priority value, range

from 0 to 7 */
 USHORT wPriority /* Priority to be assigned */
)

Description

This routine configures the 802.1p based priority.
The ‘bTagPriorityValue’ of 802.1p tag priority value (range from 0 to 7)
is mapped to transmit priority queue ‘wPriority’ (queue 0 to queue 3).

Ingress packets with be classified to which transmit priority queue
according to the 3-bit of 802.1p Tag priority value if 802.1p priority of
QoS is enabled.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 100 -

KSZ88xx Programming Guide

Synopsis

void SwitchConfigPortBased
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPriority, /* Priority to be assigned */
 UCHAR bPort /* The port index */
)

Description

This routine configures the Port based priority on the ‘bPort’ port.
Assign this port to transmit priority queue ‘bPriority’ (queue 0 to queue
3).

All the packets received at this port are sent to transmit priority queue
‘bPriority’.

Note: Call SwitchEnableMultiQueue to split single transmit queue into

four priority queues before call SwitchConfigPortBased.

Return

None.

Synopsis

void SwitchDisable802_1P
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine disables the 802.1p based priority QoS on the ‘bPort’ port.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 101 -

KSZ88xx Programming Guide

Synopsis

void SwitchDisableDiffServ
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine disables the DiffServ based priority QoS on the ‘bPort’
port.

Return

None.

Synopsis

void SwitchDisableDot1pRemapping
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine disables the 802.1p priority re-mapping function on the
‘bPort’ port.

Return

None.

Synopsis

void SwitchDisableMultiQueue
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine disables transmit multiple queues selection on the ‘bPort’
port. Only single transmit queue on the port.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 102 -

KSZ88xx Programming Guide

Synopsis

void SwitchEnable802_1P
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine enables the 802.1p based priority QoS on the ‘bPort’ port.
Note: Call HardwareConfig802_1P_Priority to setup 802.1p priority value

mapping to transmit priority queue, and SwitchEnableMultiQueue to
split single transmit queue into four priority queues before call
SwitchEnable802_1P.

Return
None.

Synopsis

void SwitchDisableDot1pRemapping
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

The routine disables the 802.1p priority re-mapping function on bPort’
port.

Return
None.

Synopsis

void SwitchEnableDot1pRemapping
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine enables the 802.1p priority re-mapping function on the
‘bPort’ port. That allows 802.1p priority field is replaced with the
Port's default tag's priority value if the ingress packet's 802.1p
priority has a higher priority than Port's default tag's priority

Return
None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 103 -

KSZ88xx Programming Guide

Synopsis

void SwitchEnableMultiQueue
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine enables the transmitting multiple queues selection on the
‘bPort’ port. The port transmit queue is split into four priority queues.

Return

None.

Synopsis

void SwitchInitPriority
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine disables all the QoS (Port based, 802.1p based, DiffServ
based) functions on all the ports.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 104 -

KSZ88xx Programming Guide

7.14 Set Device Mirror APIs

This section describes functions that configure the device port
mirroring/monitoring/sniffing functions. These APIs are listed in the
Table 7-14.

SwitchDisableMirrorReceive Disables the device Receive Only mirror on a specific port.

SwitchDisableMirrorRxAndTx Disables the device Receive And Transmit mirror.

SwitchDisableMirrorTransmit Disables the device Transmit Only mirror on a specific

port.
SwitchDisableMirrorSniffer Disables the device mirror sniffer on a specific port.

SwitchEnableMirrorReceive Enables the device Receive Only mirror on a specific port.

SwitchEnableMirrorRxAndTx Enables the device Receive And Transmit mirror.

SwitchEnaableMirrorTransmit Enables the device Transmit Only mirror on a specific

port.
SwitchEnableMirrorSniffer Enables the device mirror sniffer on a specific port.

SwitchInitMirror Disables all the mirroring functions.

Table 7-14. Device Mirror APIs

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 105 -

KSZ88xx Programming Guide

Synopsis

void SwitchDisableMirrorReceive
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine disables the "receive only" mirror on the ‘bPort’ port.

Return

None.

Synopsis

void SwitchDisableMirrorRxAndTx
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine disables the "receive AND transmi" mirror function.

Return

None.

Synopsis

void SwitchDisableMirrorTransmit
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine disables the "transmit only" mirror on the ‘bPort’ port.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 106 -

KSZ88xx Programming Guide

Synopsis

void SwitchDisableMirrorSniffer
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine disables the mirror sniffer on the ‘bPort’ port.

Return

None.

Synopsis

void SwitchEnableMirrorReceive
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine enables the "receive only" mirror on the ‘bPort’ port. All
the packets received on this port are mirrored to the sniffer port.

Return

None.

Synopsis

void SwitchEnableMirrorRxAndTx
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine enables the "receive AND transmit" mirror function. All the
packets received on port A AND transmitted on port B are mirrored to the
sniffer port.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 107 -

KSZ88xx Programming Guide

Synopsis

void SwitchEnableMirrorTransmit
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine enables the "transmit only" mirror on the ‘bPort’ port. All
the packets transmitted on this port are mirrored to the sniffer port.

Return

None.

Synopsis

void SwitchEnableMirrorSniffer
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine enables the mirror sniffer on the ‘bPort’ port.

Return

None.

Synopsis

void SwitchInitMirror
(
 PHARDWARE pHardware /* Pointer to hardware instance. */
)

Description

This routine disables all the mirror functions on all the port.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 108 -

KSZ88xx Programming Guide

7.15 Set Device Table Accesses APIs

This section describes functions that create or read all kind of device
table function support, including up to 16 group 802.1Q VLAN table, up to
8 entries of static MAC table, up to 1K entries of dynamic MAC table, and
a fully compliant statistics management information base (MIB) counters
per port. All read/write device tables are through KSZ88xx Indirect
Access registers. These APIs are listed in the Table 7-15.

PortInitCounters Reset the device MIB counters to zero on a specific port.

PortReadCounters Reads the device MIB counters on a specific port.

SwitchReadDynMacTable Reads the device dynamic MAC table on a specific entry.

SwitchReadStaticMacTable Reads the device static MAC table on a specific entry.

SwitchReadVlanTable Reads the device VLAN table on a specific entry.

SwitchWriteStaticMacTable Create a MAC entry to the device static MAC table on a

specific entry.

SwitchWriteVlanTable Create a VLAN entry to the device VLAN table on a
specific entry.

Table 7-15. Device Table Accesses APIs

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 109 -

KSZ88xx Programming Guide

Synopsis

void PortInitCounters
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine resets all the device MIB counters to zero from a specific
port ‘bPort’.

Return

None.

Synopsis

void PortReadCounters
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 UCHAR bPort /* The port index */
)

Description

This routine is used to read the 32 MIB counters for the port ‘bPort’.
This routine reads the MIB counters from device registers and stores them
in the
pHardware->m_Port[bPort]-> cnCounter[] database.

The application program may call this routine periodically to avoid
device MIB counter overflow.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 110 -

KSZ88xx Programming Guide

Synopsis

BOOLEAN SwitchReadDynMacTable
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 USHORT wAddr, /* The address (index) of the entry */
 PUCHAR MacAddr, /* Buffer to store the retrieved MAC address

*/
 PUCHAR pbFID, /* Buffer to store the retrieved FID */
 PUCHAR pbSrcPort, /* Buffer to store the retrieved source port

(b0=1, indicate port 1; b1=1, indicate
port 2; b2=1, indicate host port) */

 PUCHAR pbTimestamp, /* Buffer to store the timestamp */
 PUSHORT pwEntries /* Buffer to store the number of entries.

If this is zero, the table is empty and
so this function should not be called
again until later. */

)
Description

This routine reads an entry of the dynamic MAC table from the device by
table index ‘wAddr’. It gets MAC address associate with FID, timestamp,
and the source port where the MAC is learned from this entry. Also it
reports number of valid entries ‘pwEntries’ in the dynamic MAC table.

Return
TRUE if this entry is valid; otherwise, FALSE.

Synopsis

BOOLEAN SwitchReadStaticMacTable
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 USHORT wAddr, /* The address (index) of the entry */
 PUCHAR MacAddr, /* Buffer to store the retrieved MAC address */
 PUCHAR pbPorts, /* Buffer to store the retrieved port members

(b0=1, indicate port 1; b1=1, indicate port
2; b2=1, indicate host port) */

 PBOOLEAN pfOverride, /*Buffer to store the retrieved override flag*/
 PBOOLEAN pfUserFID, /* Buffer to store the use FID flag which

indicates the FID is valid */
 PUCHAR pbFID /* Buffer to store the FID */
)

Description

This routine reads an entry of the static MAC table from the device by
table index ‘wAddr’. It gets MAC address associate with FID, override
flag, use FID flag, and forwarding port from this entry.

Return
TRUE if this entry is valid; otherwise, FALSE.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 111 -

KSZ88xx Programming Guide

Synopsis

BOOLEAN SwitchReadVlanTable
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 USHORT wAddr, /* The address (index) of the entry */
 PUSHORT pwVID, /* Buffer to store the retrieved VID */
 PUCHAR pbFID, /* Buffer to store the retrieved FID */
 PUCHAR pbMember /* Buffer to store the retrieved port

membership (b0=1, indicate port 1; b1=1,
indicate port 2; b2=1, indicate host
port)*/

)

Description

This routine reads an entry of the VLAN table from the device by table
index ‘wAddr’. It gets VLAN id associate with FID, and port membership
(which ports are members of this VLAN).

Return

TRUE if this entry is valid; otherwise, FALSE.

Synopsis

void SwitchWriteStaticMacTable
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 USHORT wAddr, /* The address (index) of the entry */
 PUCHAR MacAddr, /* Point to a buffer contains MAC address */
 UCHAR bPorts, /* The port members (b0=1, indicate port 1;

b1=1, indicate port 2; b2=1, indicate host
port) */

 BOOLEAN fOverride, /* The override flag to override the port
receive/transmit settings */

 BOOLEAN fValid, /* The valid flag to indicate entry is valid */
 BOOLEAN fUserFID, /* The use FID flag to indicate the FID is valid

*/
 UCHAR bFID /* The FID value */
)

Description

This routine writes a static MAC entry to the device static MAC table by
table index ‘wAddr’. It creates a valid ‘fValid’ entry with MAC address
associate with FID, override flag, use FID flag, and forwarding port to
this entry.

Return

None.

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 112 -

KSZ88xx Programming Guide

Synopsis

void SwitchWriteVlanTable
(
 PHARDWARE pHardware, /* Pointer to hardware instance. */
 USHORT wAddr, /* The address (index) of the entry */
 USHORT wVID, /* The VLAN ID value */
 UCHAR bFID, /* The FID value */
 UCHAR bMember, /* The port membership (b0=1, indicate port

1; b1=1, indicate port 2; b2=1, indicate
host port)*/

 BOOLEAN fValid /* The valid flag to indicate entry is valid
*/

)

Description

This routine writes a VLAN entry to the device VLAN table by table index
‘wAddr’. It creates a valid ‘fValid’ entry with VLAN id associate with
FID, and port membership (which ports are members of this VLAN).

Return

None.

7.16 EEPROM Access APIs
This section describes functions that read or write the serial EEPROM contents if one
exists. The EEPROM contains MAC address, System ID, SystemSubID, and Configuration
parameters.

Synopsis

USHORT EepromReadWord
(
PHARDWARE pHardware, /* Pointer to hardware instance */
UCHAR Reg /* The register offset */
)

Description
This function reads a word from the AT93C46 EEPROM.

Return
The data value.

Synopsis

void EepromWriteWord

© 2006 Micrel, Inc. Confidential Information Rev. 1.2

2180 Fortune Drive, San Jose, CA 95131, USA • (408) 944-0800 • http://www.micrel.com
- Page 113 -

KSZ88xx Programming Guide

(
PHARDWARE pHardware, /* Pointer to hardware instance */
UCHAR Reg, /* The register offset */
USHORT Data /* The data value */
)

Description
This function writes a word to the AT93C46 EEPROM.

Return
None

